基于小波变换和AR-LSSVM的非平稳时间序列预测
, PP. 357-360
Keywords: 小波变换,非平稳时间序列,最小二乘支持向量机,自回归,预测
Abstract:
提出一种基于二进正交小波变换和AR-LSSVM方法的非平稳时间序列预测方案.首先利用Mallat算法对非平稳时间序列进行分解和重构,分离出非平稳时间序列中的低频信息和高频信息;然后对高频信息构建自回归模型,对低频信息则用最小二乘支持向量机进行拟合;最后将各模型的预测结果进行叠加,从而得到原始序列的预测值.研究结果表明,该方法不仅能充分拟合低频信息,而且可避免对高频信息的过拟合.
Full-Text