Lü Hexiang (吕和祥), Qiu Kunyu (邱崑玉), Chen Jianfeng (陈建峰). Solution under convective coordinate for convection-diffusion chemical reaction kinetic equations [J]. CIESC Journal (化工学报), 2005, 56(1): 41-46.
[2]
Yang Xiaohua, Yang Zhifeng, Yin Xinan, Li Jianqiang. Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation [J]. Commun. Nonlinear Sci. Numer. Simulat., 2008, 13(8): 1676-1688.
[3]
Song Wei (宋伟), Kong Qingyuan (孔庆媛), Li Hongmei (李洪枚). Characteristics of VOC mass transfer from wood furniture surface [J]. CIESC Journal (化工学报), 2013, 64(5): 1549-1560.
[4]
Stynes M. Finite volume methods for convection-diffusion problems [J]. J. Comput. Appl. Math., 1995, 63(1/2/3): 83-90.
[5]
Sonar T. On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection [J]. Comput. Methods Appl. Mech. Engrg., 1997, 140(1/2): 157-181.
[6]
Farhloul M, Serghini Mounim A. A mixed-hybrid finite element method for convection-diffusion problems [J]. Appl. Math. Comput., 2005, 171(2): 1037-1047.
Tian Z F, Ge Y B. A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problems [J]. J. Comput. Appl. Math., 2007, 198(1): 268-286.
[9]
Shih Y, Cheng J Y, Chen K T. An exponential-fitting finite element method for convection-diffusion problems [J]. Appl. Math. Comput., 2011, 217(12): 5798-5809.
[10]
Ge Yongbin, Cao Fujun. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems [J]. J. Comput. Phys., 2011, 230(10): 4051-4070.
[11]
Zingg D W, De Rango S, Nemec M, Pulliam T H. Comparison of several spatial discretizations for the Navier-Stokes equations [J]. J. Comput. Phys., 2000, 160(2): 683-704.
[12]
de Rango S, Zingg D W. Higher-order spatial discretization for turbulent aerodynamic computations [J]. AIAA Journal, 2001, 39(7): 1296-1304.
[13]
van Leer B. Towards the ultimate conservative difference scheme (Ⅴ): A second-order sequel to Godunov's method [J]. J. Comput. Phys., 1979, 32(1): 101-136.
[14]
Venkatakrishnan V. On the accuracy of limiters and convergence to steady state solutions [R]. Reno, NV: AIAA, 1993.
[15]
Venkatakrishnan V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters [J]. J. Comput. Phys., 1995, 118(1): 120-130.
[16]
Jiang Guangshan, Shu Chiwang. Efficient implementation of weighted ENO schemes [J]. J. Comput. Phys., 1996, 126(1): 202-228.
[17]
Friedrich O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids [J]. J. Comput. Phys., 1998, 144(1): 194-212.
[18]
Hu Changqing, Shu Chiwang. Weighted essentially non-oscillatory schemes on triangular meshes [J]. J. Comput. Phys., 1999, 150(1): 97-127.
[19]
Wen P H, Hon Y C, Li M, Korakianitis T. Finite integration method for partial differential equations [J]. Appl. Math. Model., 2013, 37(24): 10092-10106.
[20]
Hernandez-Martinez E, Puebla H, Valdes-Parada F, Alvarez-Ramirez J. Nonstandard finite difference schemes based on Green's function formulations for reaction-diffusion-convection systems [J]. Chem. Eng. Sci., 2013, 94: 245-255.
[21]
Xu Mingtian, Stefani F, Gerbeth G. Integral equation approach to time-dependent kinematic dynamos in finite domains [J]. Phys. Rev. E, 2004, 70(5): 056305.
[22]
Xu Mingtian, Stefani F, Gerbeth G. The integral equation approach to kinematic dynamo theory and its application to dynamo experiments in cylindrical geometry [J]. J. Comput. Phys., 2008, 227(17): 8130-8144.
[23]
Xu Mingtian, Wei Tao, Zhang Longzhou, Hao Aiqin. An integral equation approach to two-dimensional incompressible resistive magnetohydrodynamics [J]. Geophys. Astrophys. Fluid Dyn., 2014, 108(4): 463-478.
[24]
Xu Mingtian. Effect of soft-iron impellers on the von Kármán-sodium dynamo [J]. Phys. Rev. E, 2014, 89(1): 013012.
[25]
Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. 2nd ed. London: Pearson Prentice Hall, 2007: 115-155.
[26]
van Niekerk F D, van Niekerk A. An optimal rational basis function in the finite element method for convection-diffusion problems in one space variables [J]. Mathl. Comput. Modelling, 1994, 19(5): 43-50. 013012.
[27]
Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. 2nd ed. London: Pearson Prentice Hall, 2007: 115-155.
[28]
van Niekerk F D, van Niekerk A. An optimal rational basis function in the finite element method for convection-diffusion problems in one space variables[J]. Mathl. Comput. Modelling, 1994, 19(5): 43-50. ?
[29]
Fudym O, Pradère C, Batsale J C. An analytical two-temperature model for convection-diffusion in multilayered systems: application to the thermal characterization of microchannel reactors [J]. Chem. Eng. Sci., 2007, 62(15): 4054-4064.
[30]
Li Huanyong, Gu Zhi, Zhang Haiyang, Li Wenwei. Thermodynamic analysis and growth of ZnSe single crystals in Zn-Se-I2 system [J]. J. Cryst. Growth, 2015, 415: 158-165.