全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

基于LSNPE算法的化工过程故障检测

DOI: 10.3969/j.issn.0438-1157.2014.02.036, PP. 620-627

Keywords: 局部标准化,邻域保持嵌入算法,局部离群因子,多模态过程系统,监控模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

复杂化工过程通常具有多个操作模态,而且采集的数据不服从单一的高斯或非高斯分布。针对化工过程的多模态和复杂数据分布问题,将局部标准化(localstandardized,LS)策略应用于邻域保持嵌入(neighborhoodpreservingembedding,NPE)算法,提出了一种新的基于局部标准化邻域保持嵌入(localstandardizedneighborhoodpreservingembedding,LSNPE)算法的故障检测方法。首先,使用LSNPE算法提取高维数据的低维子流形,进行维数约减,同时保持邻域结构不变。其次,通过特征空间中样本的局部离群因子(localoutlierfactor,LOF)构造监控统计量并确定其控制限。相较于监控多模态化工过程的多模型策略,提出的LSNPE方法不需要过程先验知识的支持,只需建立一个全局的监控模型。最后,通过数值仿真及TennesseeEastman(TE)过程仿真研究验证了本文提出方法的有效性。

References

[1]  Lee Jong-Min, Yoo Chang Kyoo, Choi Sang Wook, Vanrolleghem Peter A, Lee In-Beum. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59: 223-234
[2]  Yao Yuan, Gao Furong. Statistical monitoring and fault diagnosis of batch process using two-dimensional dynamic information[J]. Industrial Engineering Chemical Research, 2010, 49: 9961-9969
[3]  Ge Zhiqiang, Song Zhihuan, Gao Furong. Review of recent research on data-based process monitoring[J]. Industrial Engineering Chemical Research, 2013, 52: 3543-3562
[4]  Zhao Shijian, Zhang Jie, Xu Yongmao. Monitoring of processes with multiple operation modes through multiple principal component analysis models[J]. Industrial Engineering Chemical Research, 2004, 43: 7025-7035
[5]  Ge Zhiqiang, Song Zhihuan. Mixture Bayesian regularization method of PPCA for multimode process monitoring[J]. American Institute of Chemical Engineers, 2010, 56(11): 2838-2849
[6]  Xie Xiang, Shi Hongbo. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models[J]. Industrial Engineering Chemical Research, 2012, 51: 5497-5505
[7]  Yu Jie. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical Engineering Science, 2011, 68: 506-519
[8]  Zhao Chunhui, Gao Furong, Wang Fuli. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)[J]. Industrial Engineering Chemical Research, 2009, 48: 9163-9174
[9]  Zhou Donghua, Hu Yanyan. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6): 748-758
[10]  Kruger Uwe, Dimitriadis Grigorios. Diagnosis of process faults in chemical systems using a local partial least squares approach[J]. American Institute of Chemical Engineers, 2008, 54: 2581-2596
[11]  Ge Zhiqiang, Song Zhihuan. Maximum-likelihood mixture factor analysis model and its application for process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 102: 53-61
[12]  Ge Zhiqiang, Song Zhihuan. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors[J]. Industrial Engineering Chemical Research, 2007, 46: 2054-2063
[13]  Zhang Yingwei. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science, 2009, 64(5): 801-811
[14]  Ma Yuxin(马玉鑫), Wang Mengling(王梦灵), Shi Hongbo(侍洪波). Fault detection for chemical process based on locally linear embedding[J]. CIESC Journal (化工学报), 2012, 63(7): 2121-2127
[15]  Hu Kunlun, Yuan Jingqi. Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding[J]. Chemometrics and Intelligent Laboratory Systems, 2008, 90: 195-203
[16]  Lee Jaeshin, Kang Bokyoung, Kang Suk-Ho. Integrating independent component analysis and local outlier factor for plant-wide process monitoring[J]. Journal of Process Control, 2011, 21: 1011-1021
[17]  Ma Hehe, Hu Yi, Shi Hongbo. Fault detection and identification based on neighborhood standardized local factor method[J]. Industrial Engineering Chemical Research, 2012, 52: 2389-2402
[18]  Duan Lian, Xiong Deyi, Lee Jun, Guo Feng. A local-density based spatial clustering algorithm with noise//IEEE International Conference on System, Man, and Cybernetics[C].Taipei, 2006: 4061-4066
[19]  Ge Zhiqiang, Song Zhihuan. Multimode process monitoring based on Bayesian method[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 23: 636-650
[20]  Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17(3): 245-255
[21]  Ricker N L. Optimal steady-state operation of the Tennessee Eastman challenge process[J]. Computers and Chemical Engineering, 1995, 19(9): 949-959

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133