Manning B A, Fendorf S E, Goldberg S. Surface structures and stability of arsenic (III) on goethite: spectroscopic evidence for inner-sphere complexes[J]. Environmental Science & Technology, 1998, 32(16): 2383-2388
[2]
Tadanier C J, Eick M J. Formulating the charge-distribution multisite surface complexation model using FITEQL[J]. Soil Science Society of America Journal, 2002, 66(5): 1505-1517
[3]
Jia Y, Xu L, Wang X, et al. Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite [J]. Geochimica et Cosmochimica Acta, 2007, 71(7): 1643-54
[4]
Goldberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling [J]. Journal of colloid and Interface Science, 2001, 234(1): 204-16
[5]
Li Na(李娜), Sun Zhumei(孙竹梅), Ruan Fuhui(阮福辉),Du Dongyun(杜冬云). Mechanism of removing arsenic (Ⅲ) with ferric chloride[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2012, 63(7):2224-2228
[6]
Ostrowski S R, Wilbur S, Chou S C S J, Pohl H R, Stevens Y W, Allred P M, Roney N, Fay M and Tylenda C A. Agency for Toxic Substances and Disease Registry's 1997 priority list of hazardous substances. Latent effects-carcinogenesis, neurotoxicology, and developmental deficits in humans and animals[J]. Toxicology and Industrial Health, 1999, 15(7):602-644
[7]
Lado L R, Sun G F, Berg M, Zhang Q, Xue H B, Zheng Q M, Johnson C A. Groundwater Arsenic Contamination Throughout China [J]. Science, 2013,341(6148):866-868
[8]
Satarug S, Baker J R, Urbenjapol S, Elkins M H, Reilly P E B, Williams D J, Moore M R. A global perspective on cadmium pullution and toxicity in nonoccupationally exposed population [J]. Toxicology Letters, 2003,137(1-2):65-83
[9]
Cui Y J, Zhu Y G, Zhai R H, Huang Y Z, Qiu Y, Liang J Z. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China [J]. Enviroment International, 2005, 31(6):784-790
[10]
Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, Rudisill C. Toxicological Profile for Cadmium [M]. Agency for Toxic Substances and Disease Registry (US), Atlanta (GA), 2012
[11]
Staessen J A, Amery A, Lauwerys R R, Roels H A, Ide G, Vyncke G. Renal function and historical enviromental cadmium pollution from zinc smelters [J].The Lancet, 1994,343(8912):1523-1527
[12]
Sun H F, Li Y H, Ji Y F, Yang L S, Wang W Y, Li H R. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2):308-314
[13]
Ritchie V J, Ilgen A G, Mueller S H, et al. Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills District, Denali National Park and Preserve, Alaska [J]. Chemical Geology, 2012,33:172-188
[14]
Sarmiento A M, Caraballo M A, Sanchez D R, et al. Dissolved and particulate metals and arsenic species mobility along a stream affected by Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) [J]. Applied Geochemistry, 2012,27(10):1944-1952
[15]
Twidwell L G, Robins R G, Hohn J W. The removal of arsenic from aqueous solution by coprecipitation with iron (III)[J]. Proceedings Arsenic Metallurgy: Fundamentals and Applications, Eds. RG Reddy and V. Ramachandran, 2005: 3-24
[16]
De Klerk R J, Jia Y, Daenzer R, et al. Continuous circuit coprecipitation of arsenic (V) with ferric iron by lime neutralization: Process parameter effects on arsenic removal and precipitate quality[J]. Hydrometallurgy, 2012, 111-112: 65-72
[17]
Jia Y, Demopoulos G P. Coprecipitation of arsenate with iron (III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention[J]. Water research, 2008, 42(3): 661-668
[18]
Zuyi T, Taiwei C, Weijuan L. On the application of surface complexation models to ionic adsorption[J]. Journal of colloid and interface science, 2000, 232(1): 174-177
[19]
Goldberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. Journal of colloid and Interface Science, 2001, 234(1): 204-216
[20]
Grossl P R, Eick M, Sparks D L, et al. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique[J]. Environmental science & technology, 1997, 31(2): 321-326.
[21]
Stachowicz M, Hiemstra T, van Riemsdijk W H. Surface speciation of As (III) and As (V) in relation to charge distribution[J]. Journal of colloid and interface science, 2006, 302(1): 62-75
[22]
Antelo J, Avena M, Fiol S, et al. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface[J]. Journal of Colloid and Interface Science, 2005, 285(2): 476-486
[23]
Cheng Z, Van Geen A, Jing C, et al. Performance of a household-level arsenic removal system during 4-month deployments in Bangladesh[J]. Environmental science & technology, 2004, 38(12): 3442-3448
[24]
Pakzadeh B, Batista J R. Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride[J]. Journal of hazardous materials, 2011, 188(1): 399-407
[25]
Fuller C C, Davis J A, Waychunas G A. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation [J]. Geochimica et Cosmochimica Acta, 1993, 57(10): 2271-2282