全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

基于核Fisher包络分析的间歇过程故障诊断

, PP. 0-0

Keywords: 间歇过程,故障诊断,核Fisher,包络面模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着间歇过程越来越受重视,其过程监控和故障诊断技术也成为研究热点。本文以核Fisher判别分析为基础,提出了基于核Fisher的正常工况与故障包络面模型,给出了基于该模型的在线故障诊断流程。此方法利用了Fisher判别分析对类别的划分特点,分别针对正常工况数据和各故障类型数据建立包络曲面模型。与多向Fisher判别分析相比,该方法按批次方向将数据展开,能够解决生产周期不一致问题,在线故障诊断时也不需要完整的生产轨迹,并且加入核函数来处理复杂的非线性。最后在青霉素发酵过程的仿真平台上对该方法进行测试,与改进多向Fisher判别分析方法进行对比,本文方法获得了满意的诊断效果:能够及早诊断出故障的发生,并在有效识别已有故障的同时还具有对新故障的自学习能力。

References

[1]  Yang Zhicai(杨志才). Batch Process-Principles, Process and Equipment in Chemical Production(化工生产中的间歇过程——原理、工艺及设备)[M]. Beijing: Chemical Industry Press, 2001: 1-5
[2]  Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri S N. A review of process fault detection and diagnosis: Part 1: Quantitative model-based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 293-311
[3]  MacGregor J. F., Kourti T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403-414
[4]  Yang Yinghua(杨英华). Process monitoring and fault diagnosis based on a nonlinear principal component regression method[J]. Information and Control(信息与控制), 2002, 31(3): 272-276
[5]  Komulainen T., Sourander M., Jamsa-Jounela S. L. An online application of dynamic PLS to a de-aromatization process[J]. Computers &Chemical Engineering, 2004, 28(12): 2611-2619
[6]  Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial Processes using canonical variate analysis and dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory systems, 2000, 51 (1): 81-93
[7]  Jang Liying(蒋丽英). Researches on Fault Diagnosis for Process Industry with FDAD/PLS Methods[D]. Zhejiang University(浙江大学), 2005
[8]  Nomikos, P, and MacGregor, J. F, Monitoring batch process using multiway principal component analysis[J]. AIChE. J, 1994, 40: 1361-1375
[9]  Nonikos,. P, MacGregor, J. E, Multiway Partial least squares in monitoring batch Process[J]. Chem. Intell. Lab. Sys, 1995, 30: 97-115
[10]  Chen Yahua(陈亚华). Monitoring batch processes using multiway Fisher discriminnant analysis[J]. Information Technology Science of Jilin University (吉林大学信息学报科学版), 2004, 22(4): 384-387
[11]  Kassidas A., MaeGregor J. F. and Taylor P. A., Synchronization of batch trajectories using dynamic time warping[J]. AIChE. J, 1998, 44: 864-875
[12]  Undey C., Ertunc S. and Cinar A., Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis[J]. Ind. Eng. Chem. Res. 2003, 42: 4645-4658
[13]  He, Q. P., S. J. Qin and J. Wang. A new fault diagnosis method using fault directions in fisher discrimination analysis[J]. AIChE J, 2005, 51(2): 555-571
[14]  Jiang L Y, Xie L, Wang S Q. Fault diagnosis for batch processes by improved multi-model Fisher discriminant analysis[J]. Chinese Journal of Chemical Engineering, 2006, 14(3): 343-348 浏览
[15]  Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR. Fisher discriminant analysis with kernels. In: IEEE international workshop on neural networks for signal processing, vol. IX, 1999. p. 41-8
[16]  Christianini N, Shawe-Taylor J1An Introduction to Support Vector Machines and Other Kernel Based Learning Methods1UK: Cambridge University Press, 2000
[17]  Gulnur birol, Cenk Undey and Ali Cinar. A modular simulation for fed-batch fermentation: Penicillin production. Computers&Chemical Engineering, 2002, 26(3): 1553-1565
[18]  Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering (S0098-1354), 2002, 26 (11): 1553-1565
[19]  Bajpai R, Reuss M. A mechanistic model for penicillin production[J]. Journal of Chemical Technology and Biotechnology (S0268-2575), 1980, 30: 332-344
[20]  Undey C, Tatara E, Cinar A. Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations[J]. Journal of Biotechnology (S0168-1656), 2004, 108(1): 61-77

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133