全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

一种非线性系统在线辨识的选择性递推方法

DOI: 10.11949/j.issn.0438-1157.20141481, PP. 272-277

Keywords: 非线性系统,动态建模,神经网络,递推算法,极限学习机,系统工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对非线性系统的在线辨识,提出了一种选择性递推岭参数极限学习机方法。首先,推导了岭参数极限学习机模型节点增加的递推算法,以有效地更新在线模型。其次,结合训练模型的相对误差,提出模型节点递推增加的选择性策略,以限制模型的复杂度,获得更简单的递推辨识模型。通过一个典型非线性化工过程的在线辨识,从多方面比较验证了所提出方法的简单有效,更适合非线性过程的在线辨识。

References

[1]  Zhu Qunxiong(朱群雄), Ma Dexian(麻德贤). Recognition of neural network process model [J]. Journal of Chemical Industry and Engineering(China)(化工学报), 1997, 48(5): 547-552
[2]  Ljung L, Hjalmarsson H. Four encounters with system identification [J]. Eur. J. Control, 2011, 17(5/6): 449-471
[3]  S?derstr?m T. System identification for the errors-in-variables problem [J]. Trans. Inst. Meas. Control, 2012, 34: 780-792
[4]  Hong X, Mitchell R J, Chen S, Harris C J, Li K, Irwin G W. Model selection approaches for non-linear system identification: a review [J]. Int. J. Syst. Sci., 2008, 39: 925-946
[5]  Zhu Y C. Multivariable System Identification for Process Control[M]. United Kingdom: Elsevier Science & Technology Books, 2001
[6]  Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks [J]. IEEE Trans. Neural Networks, 1990(1): 4-27
[7]  Liu Y, Chen J. Correntropy kernel learning for nonlinear system identification with outliers [J]. Ind. Eng. Chem. Res., 2014, 53(13): 5248-5260
[8]  Huang G B, Zhu Y, Siew C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70: 489-501
[9]  Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey [J]. Int. J. Mach. Learn. & Cyber., 2011, 2: 107-122
[10]  Huang G B, Chen L. Convex incremental extreme learning machines [J]. Neurocomputing, 2007, 70: 3056-3062
[11]  Feng G, Huang G B, Lin Q P. Error minimized extreme learning machine with growth of hidden nodes and incremental learning [J]. IEEE Trans. Neural Networks, 2009, 20(8): 1352-1356
[12]  Miche Y, Sorjamaa A, Bas P. OP-ELM: optimally pruned extreme learning machine [J]. IEEE Trans. Neural Networks, 2010, 21(1): 570-578
[13]  Huang G B, Li M B, Chen L. Incremental extreme learning machine with fully complex hidden nodes [J]. Neurocomputing, 2008, 71: 1-7
[14]  Huang G B, Zhou H M, Ding X J Extreme learning machine for regression and multiclass classification [J]. IEEE Trans. Syst., Man, Cybern. B, Cybern., 2012, 42(2): 513-529
[15]  Golub G H, Heath M, Wahha G. Generalize cross-validation as a method for choosing a good ridge parameter [J]. Technometrics, 1979, 21(2): 215-223
[16]  Yu Q, Miche Y. Rugularized extreme learning machine for regression with missing data [J]. Neurocomputing, 2013, 102: 45-51
[17]  Liu Y, Wang H Q, Yu J, Li P. Selective recursive kernel learning for online identification of nonlinear systems with NARX form [J]. J. Process Control, 2010, 20(2): 181-194
[18]  Liu Xueyi(刘学艺), Li Ping(李平), Gao Chuanhou(郜传厚). Fast leave one out cross validation algorithm of extreme learning machine [J]. J. Shanghai Jiao Tong Univ.(上海交通大学学报), 2011, 45(8): 1140-1145
[19]  Nikravesh M, Farell1 A E, Stanford T G. Control of nonisothermal CSTR with time-varying parameters via dynamic neural network control (DNNC) [J]. Chem. Eng. J., 2000, 76(1): 1-16
[20]  ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/espinosa/datasets/cstr.Dat [DB]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133