全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2012 

基于奇异值识别的模式切换过程递归PCA监控

DOI: 10.3969/j.issn.0438-1157.2012.09.044, PP. 2948-2952

Keywords: 多模式过程,监控,奇异值识别,递归PCA

Full-Text   Cite this paper   Add to My Lib

Abstract:

常规的PCA方法难于对发生模式变化的过程参数进行监控,为此,本文提出了一种基于奇异值识别递归PCA技术,用于解决多模式切换过程的监控问题。首先建立了在线奇异值识别算法,通过识别奇异值的变化可以准确判断过程发生模式切换的时间,然后采用递归PCA对过程的模式切换过渡阶段进行监控。将TE过程用于实例研究,验证了所提出方法的有效性。

References

[1]  Zhang Xinrong(张新荣).Researches on continuous process performance monitoring and fault diagnosis based on PCA.Wuxi:Jiangnan University,2008
[2]  Guo Ming(郭明).Researches on performance monitoring and fault diagnosis for process industry based on data-driven technique.Hangzhou:Zhejiang University,2004
[3]  Liu Shaobo(刘少波).Study of monitoring and fault diagnosis in industrial process based on the theory of multivariate statistics.Harbin:Harbin University of Science and Technology,2008
[4]  Yang Peiwu(杨沛武).Study of multivariate statistical method based on probabilistic PCA on the process monitoring.Wuxi:Jiangnan University,2008
[5]  Xu Yongmao(徐用懋),Zhao Shijian(赵仕健).Multivariate statistical process monitoring and safe operating [J].Computers and Applied Chemistry(计算机与应用化学),2007,24(4):475-478
[6]  Dae-Hee Hwang,Chonghun Han.Real-time monitoring for a process with multiple operating modes[J].Control Engineering Practice,1999,7:891-902
[7]  Pearson K.On lines and planes of closest fit to systems of points in space[J].Edinburgh and Duhlin Philosophical Magazine and Journal of Science,1901,6(2):572-575
[8]  Manabu K,Koji N,Shinji H,Iori H,Hiromu O,Ramon S,Bhavik B.Comparison of statistical process monitoring methods:application to the Eastman challenge problem[J].Computers and Chemical Engineering,2000,24:175-181
[9]  Jiang Haotian(蒋浩天),Duan Jianmin(段建民).Fault Detection and Diagnosis in Industrial Systems(工业系统的故障检测与诊断)[M].Beijing:China Machine Press,2003:98-107
[10]  Zhao Zhonggai(赵忠盖).Some studies on statistical process monitoring based on PCA.Wuxi:Jiangnan University,2007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133