Goyal A. Osmoregulation in Dunaliella Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta [J]. Plant Physiology and Biochemistry, 2007, 45(9): 705-710
Cui L Q, Chai Y R, Li J, Liu H T, Zhang L, Xue L X. Identification of a glucose-6-phosphate isomerase involved in adaptation to salt stress of Dunaliella salina [J]. Journal of Applied Phycology, 2010, 22(5): 563-568
Takahashi Y, Ito T. Structure and function of CDPK: a sensor responder of calcium[J]. Signaling and Communication in Plants, 2011, 10: 129-146
[14]
Katz A, Pick U. Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella [J]. Biochimica et Biophysica Acta, 2001, 1504: 423-431
[15]
Shi H, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana [J]. Nature Biotechnology, 2002, 21: 8l-85
[16]
管祯玮. 盐藻钠磷共转运通道基因家族的克隆与分析[D]. 上海:上海大学, 2012. 6
[17]
He Q, Qiao D, Bai L, Zhang Q, Yang W, Li Q, Cao Y. Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina [J]. Plant Physiology, 2007, 164(2): 214-220
Amel A. Tammam, Eman M. Fakhry, Mostafa El-Sheekh. Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta [J]. African Journal of Biotechnology, 2011, 10(19): 3795-3808
[20]
Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under saltstress[J]. Bioresource Technology, 2009, 100(13): 3382-3386
[21]
Mishra A, Jha B. Cloning differentially expressed salt induced cDNAs from Dunaliella salina under super saturated salt stress using subtractive hybridization[J]. Botanica Marina, 2011, 54 (2): 189-193
[22]
Choi H I, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscises acid responsive gene expression and modulates its activity[J]. Plant Physiology, 2005, 139(4): 1750-1761
[23]
Mori I, Murata Y, Yang Y Z, Munemasa S, Wang Y F, Andreoli S, Tiriac H, Alonso J M, Harper J F, Ecker J R, Kwak J M, Schroeder J I. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure[J]. PLOS Biology, 2006, 4(10): 1749-1762
[24]
Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscises acid signal transduction in Arabidopsis [J]. Plant Cell, 2007, 19(10): 3019-3036
Zhang H C, Yin W L, Xia X L. Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment[J]. Plant Growth Regulation, 2008, 56: 129-140
[32]
Ito T, Nakata M, Ishida S, Takahashi Y. The mechanism of substrate recognition of Ca2+ dependent protein kinases[J]. Plant Signal and Behavior, 2011, 6(7): 924-926