全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压屈服强度测量方法比较研究

DOI: 10.11858/gywlxb.2013.06.005, PP. 821-827

Keywords: 高压屈服强度,Asay-Chhabildas(AC)方法,横向应力计方法,压-剪方法,X射线衍射方法,Steinberg-Cochran-Guinan(SCG)模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

对Asay-Chhabildas(AC)方法、横向应力计方法、压-剪方法和X射线衍射方法等4种高压动态屈服强度测量方法进行了比较,根据应变率的异同,将强度数据分为两类进行比较:X射线衍射方法和压-剪方法获得的强度与AC方法获得的强度Y=2τc进行比较,而横向应力计方法测得的屈服强度与AC方法中的Y=2τH进行比较。通过铝及其合金屈服强度数据的比较分析表明,AC方法、X射线衍射法和压-剪方法测得的强度数据基本一致,但横向应力计法测得的强度远高于AC方法测得的结果(Y=2τH),甚至高于其它3种方法测得的结果(Y=2τc)。造成横向应力计方法测量结果异常的原因有待进一步研究。与实验数据的比较表明,Steinberg-Cochran-Guinan(SCG)模型过于依赖初始屈服强度,从而导致无法完全反映高压下材料的强度特性,模型有待进一步改进。

References

[1]  Fowles G R. Shock wave compression of hardened and annealed 2024 aluminum [J]. J Appl Phys, 1961, 32(8): 1475-1487.
[2]  Asay J R, Chhabildas L C. Determination of the shear strength of shock compressed 6061-T6 aluminum [C]//Meyers M M, Murr L E. Shock Waves and High-Strain-Rate Phenomena in Metals. New York: Plenum Publishing Corp, 1981: 417-431.
[3]  Rosenberg Z, Partom Y, Yaziv D. The use of in-material stress gauges for estimating the dynamic yield strength of shock-loaded solids [J], J Appl Phys, 1984, 56(1): 143-146.
[4]  Clifton R J, Klopp R W. Pressure-shear plate impact testing [C]//Metals Handbook: Mechanical Testing. OH, USA: American Society for Metals, 1985: 230-239.
[5]  Turneaure S J, Gupta Y M. Material strength in shock compressed state using x-ray diffraction measurements [J]. J Appl Phys, 2011, 109(12): 123510.
[6]  Vogler T J, Chhabildas L C. Strength behavior of materials at high pressures [J]. Int J Impact Eng, 2006, 33: 812-825.
[7]  Millett J C F, Bourne N K, Chu M Q, et al. The role of aging on the mechanical and microstructural response [J]. J Appl Phys, 2010, 108(7): 073502.
[8]  Yadav S, Chichili D R, Ramesh K T. The mechanical response of a 6061-T6 A1/Al2O3 metal matrix composite at high rates of deformation [J]. Acta Metal Mater, 1995, 43(12): 4453-4464.
[9]  Alexander C S, Asay J R, Haill T A. Magnetically applied pressure- shear: A new method for direct measurement of strength at high pressure [J]. J Appl Phys, 2010, 108(12): 126101.
[10]  Huang H, Asay J R. Compressive strength measurements in aluminum for shock compression of the stress range of 4-22 GPa [J]. J Appl Phys 2005, 98(3): 033524.
[11]  Huang H, Asay J R. Reshock and release response of aluminum single crystal [J]. J Appl Phys, 2007, 101(6): 063550.
[12]  Asay J R, Lipkin J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material [J]. J Appl Phys, 1978, 49(7): 4242-4247.
[13]  Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate [J]. J Appl Phys, 1980, 51(3): 1496-1504.
[14]  Grunschel S E, Clifton R J. Pressure-shear plate impact of aluminum at elevated temperatures [C]//Elert M L, Furnish M D, Chau R, et al. Shock Compression of Condensed Matter-2007. New York: AIP, 2008: 529-532.
[15]  Casem D T, Dandekar D P. Shock and mechanical response of 2139-T8 aluminum [J]. J Appl Phys, 2012, 111(6): 06358.
[16]  Gupta Y M, Winey J M, Trivedi P B, et al. Large elastic wave amplitude and attenuation in shocked pure aluminum [J]. J Appl Phys, 2009, 105(3): 036107.
[17]  Appleby-Thomas G J, Hazell P J, Wood D C, et al. On the effects of lateral gauge misalignment in shocked targets [J]. Rev Sci Instrum, 2012, 83(6): 063904.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133