Chhabildas L C, Dunn J E, Reinhart W D, et al. An impact technique to accelerate flier plates to velocities over 12 km/s [J]. Int J Impact Eng, 1993, 14(1): 121-132.
[2]
Walker J D, Grosch D J, Mullin S A. Experimental impacts above 10 km/s [J]. Int J Impact Eng, 1995, 17(4): 903-914.
[3]
Chhabildas L C, Kmetyk L N, Reinhart W D, et al. Launch enhanced hypervelocity launcher capabilities to over 16 km/s [J]. Int J Impact Eng, 1995, 17(1): 183-194.
[4]
Cui D M, Fan B C, Xin X J. Oblique detonation stabilized on a hypervelocity projectile [J]. Explosion and Shock Waves, 2002, 22(3): 263-266. (in Chinese)
Gong Z Z, Yang J Y, Dai F, et al. Research progress of CAST space debris in hypervelocity impact experiments [J]. Spacecraft Environment Engineering, 2009, 26(4), 301-307. (in Chinese)
Sun C W. Applied Detonation Physics [M]. Beijing: National Defence Industry Press, 2000: 574-633. (in Chinese)
[9]
孙承纬. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 574-633.
[10]
Yu Y Y. Study on the quasi-elastic release behavior and spallation of LY12 aluminum alloy under strong shock loading [D]. Mianyang: China Academy of Engineering Physics, 2006: 116-127. (in Chinese)
Gui Y L, Liu C L, Wang Y P, et al. Spall fracture properties of AF1410 steel [J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 34-38. (in Chinese)
Zhao S C, Song Z F, Ji G F, et al. A novel design of a hypervelocity launcher based on two-stage gas gun facilities [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 557-564. (in Chinese)