全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超高压对蛋白质的影响

DOI: 10.11858/gywlxb.2014.04.017, PP. 498-506

Keywords: 超高压,蛋白质,分子体积,非共价键,结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

在现有的超高压对蛋白质影响研究的基础上,详细地总结了超高压对蛋白质的分子体积、非共价键和分子结构的影响。在超高压作用下,蛋白质的分子体积被压缩变小;压力通过改变蛋白质分子的氢键、离子键、水合作用和疏水相互作用来影响蛋白质结构;低于800MPa的压力会造成蛋白质分子的二级、三级和四级结构的改变,其中四级结构对压力最敏感,三级结构次之,二级结构的改变较小;高于8GPa的压力会影响蛋白质分子的一级结构。

References

[1]  Girard E, Marchal S, Perez J, et al. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure [J]. Biophys J, 2010, 98(10): 2365-2373.
[2]  Le Tilly V, Sire O, Alpert B, et al. An infrared study of 2H-bond variation in myoglobin revealed by high pressure [J]. Eur J Biochem, 1992, 205(3): 1061-1065.
[3]  Kangur L, Timpmann K, Freiberg A. Stability of integral membrane proteins under high hydrostatic pressure: The LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria [J]. J Phys Chem B, 2008, 112(26): 7948-7955.
[4]  Hummer G, Garde S, García A E, et al. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins [J]. Proc Natl Acad Sci, 1998, 95(4): 1552-1555.
[5]  Hemley R J. Effects of high pressure on molecules [J]. Annu Rev Phys Chem, 2000, 51: 763-800.
[6]  Chen W, Heymann G, Kursula P, et al. Effects of gigapascal level pressure on protein structure and function [J]. J Phys Chem B, 2012, 116(3): 1100-1110.
[7]  Subirade M, Loupil F, Allain A, et al. Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by Fourier transform infrared spectroscopy [J]. Int Dairy J, 1998, 8(2): 135-140.
[8]  Ngarize S, Herman H, Adams A, et al. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated β-lactoglobulin and ovalbumin proteins using fourier transform raman spectroscopy and self-deconvolution [J]. J Agric Food Chem, 2004, 52(21): 6470-6477.
[9]  Rouget J B, Schroer M A, Jeworrek C, et al. Unique features of the folding landscape of a repeat protein revealed by pressure perturbation [J]. Biophys J, 2010, 98(11): 2712-2721.
[10]  Takeda N, Kato M, Taniguchi Y. Pressure- and thermally-induced reversible changes in the secondary structure of ribonuclease: A studied by FT-IR spectroscopy [J]. Biochemistry, 1995, 34(17): 5980-5987.
[11]  Yan L F, Sun Z R. Structure of Proteins [M]. Beijing: Tsinghua University Press, 1999: 334. (in Chinese)
[12]  阎隆飞, 孙之荣. 蛋白质分子结构 [M]. 北京: 清华大学出版社, 1999: 334.
[13]  Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers [J]. Biochim Biophys Acta, 2006, 1764(3): 619-631.
[14]  Tschirret-Guth R A, Hoa G H B, de Montellano P R O. Pressure-induced deformation of the cytochrome P450cam active site [J]. J Am Chem Soc, 1998, 120(15): 3590-3596.
[15]  Tschirret-Guth R A, Koo L S, Hoa G H, et al. Reversible pressure deformation of a thermophilic cytochrome P450 enzyme (CYP119) and its active-site mutants [J]. J Am Chem Soc, 2001, 123(15): 3412-3417.
[16]  Li H, Yamada H, Akasaka K. Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor [J]. Biophys J, 1999, 77(5): 2801-2812.
[17]  Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy [J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780.
[18]  King L, Weber G. Conformational drift of dissociated lactate dehydrogenases [J]. Biochemistry, 1986, 25(12): 3632-3637.
[19]  Silva J L, Miles E W, Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase [J]. Biochemistry, 1986, 25(19): 5780-5786.
[20]  Ruan K, Weber G. Dissociation of yeast hexokinase by hydrostatic pressure [J]. Biochemistry, 1988, 27(9): 3295-3301.
[21]  Panda M, Ybarra J, Horowitz P M. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES [J]. J Biol Chem, 2001, 276(9): 6253-6259.
[22]  Paladini A A Jr, Weber G. Pressure-induced reversible dissociation of enolase [J]. Biochemistry, 1981, 20(9): 2587-2593.
[23]  Royer C A, Weber G, Daly T J, et al. Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure [J]. Biochemistry, 1986, 25(25): 8308-8315.
[24]  Rietveld A W, Ferreira S T. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: Persistent heterogeneity of a protein dimer [J]. Biochemistry, 1996, 35(24): 7743-7751.
[25]  Ruan K, Weber G. Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase [J]. Biochemistry, 1989, 28(5): 2144-2153.
[26]  Peng X, Jonas J, Silva J L. High-pressure NMR study of the dissociation of Arc repressor [J]. Biochemistry, 1994, 33(27): 8323-8329.
[27]  Zhou L Y, Liao H M, Zhang W J, et al. Review of high pressure technologies for food processing [J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(4): 165-169. (in Chinese)
[28]  周林燕, 廖红梅, 张文佳, 等. 食品高压技术研究进展和应用现状 [J]. 中国食品学报, 2009, 9(4): 165-169.
[29]  Liao X J. HHP has bright prospect in fruit and vegetable processing [J]. Agriculture Engineering Technology, 2009(9): 36-38. (in Chinese)
[30]  廖小军. 超高压技术在果蔬加工中大有可为 [J]. 农业工程技术, 2009(9): 36-38.
[31]  Shangguan L J, Ma Y K, Cui F J, et al. Effects of high pressure processing on the activity and the conformation of horseradish peroxidase [J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 475-480. (in Chinese)
[32]  上官丽娟, 马永昆, 崔凤杰, 等. 高压处理对辣根过氧化物酶活性及构象的影响 [J]. 高压物理学报, 2011, 25(5): 475-480.
[33]  Ma H J, Zhou G H, Yu X L, et al. Effects of combined high pressure and thermal treatment on protease activities in beef muscle [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 89-96. (in Chinese)
[34]  马汉军, 周光宏, 余小领, 等. 高压与加热协同处理对牛肌肉中蛋白酶活性的影响 [J]. 高压物理学报, 2011, 25(1): 89-96.
[35]  Chen X Q, Zhang Y J, Zhang S K, et al. Effect of high pressure processing on polyphenol oxidase from trametes trogii [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 235-240. (in Chinese)
[36]  陈小强, 章银军, 张士康, 等. 超高压处理对毛栓菌多酚氧化酶的影响 [J]. 高压物理学报, 2012, 26(2): 235-240.
[37]  Mozhaev V V, Heremans K, Frank J, et al. High pressure effects on protein structure and function [J]. Proteins Struct Funct Bioinf, 1996, 24(1): 81-91.
[38]  Silva J L, Foguel D, Royer C A. Pressure provides new insights into protein folding, dynamics and structure [J]. Trends Biochem Sci, 2001, 26(10): 612-618.
[39]  Boonyaratanakornkit B B, Park C B, Clark D S. Pressure effects on intra- and intermolecular interactions within proteins [J]. Biochim Biophys Acta, 2002, 1595(1/2): 235-249.
[40]  Eisenmenger M J, Reyes-De-Corcuera J I. High pressure enhancement of enzymes: A review [J]. Enzyme Microb Technol, 2009, 45(5): 331-347.
[41]  Gross M, Jaenicke R. Proteins under pressure: The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes [J]. Eur J Biochem, 1994, 221(2): 617-630.
[42]  Bu P Y, Xia Q. General Chemistry [M]. Beijing: Science Press, 2009: 253. (in Chinese)
[43]  卜平宇, 夏泉. 普通化学 [M]. 北京: 科学出版社, 2009: 253.
[44]  Bridgman P W. The Physics of High Pressure [M]. London: George Bell & Sons Ltd, 1931: 450.
[45]  Gekko K, Hasegawa Y. Compressibility-structure relationship of globular proteins [J]. Biochemistry, 1986, 25(21): 6563-6571.
[46]  Prehoda K E, Mooberry E S, Markley J L. Pressure denaturation of proteins: Evaluation of compressibility effects [J]. Biochemistry, 1998, 37(17): 5785-5790.
[47]  Vidugiris G J A, Royer C A. Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states [J]. Biophys J, 1998, 75(1): 463-470.
[48]  Seemann H, Winter R, Royer C A. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease [J]. J Mol Biol, 2001, 307(4): 1091-1102.
[49]  Roche J, Caro J A, Norberto D R, et al. Cavities determine the pressure unfolding of proteins [J]. Proc Natl Acad Sci, 2012, 109(18): 6945-6950.
[50]  Visser A, Li T M, Drickamer H G, et al. Effect of pressure upon the fluorescence of various flavodoxins [J]. Biochemistry, 1977, 16(22): 4879-4882.
[51]  Zipp A, Kauzmann W. Pressure denaturation of metmyoglobin [J]. Biochemistry, 1973, 12(21): 4217-4228.
[52]  Kornblatt J A, Hui Bon Hoa G, Heremans K. Pressure-induced effects on cytochrome oxidase: The aerobic steady state [J]. Biochemistry, 1988, 27(14): 5122-5128.
[53]  Fuentes E J, Wand A J. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure [J]. Biochemistry, 1998, 37(28): 9877-9883.
[54]  Collins M D, Quillin M L, Hummer G, et al. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography [J]. J Mol Biol, 2007, 367(3): 752-763.
[55]  Abe F, Kato C, Horikoshi K. Pressure-regulated metabolism in microorganisms [J]. Trends Microbiol, 1999, 7(11): 447-453.
[56]  Heremans L, Heremans K. Raman spectroscopic study of the changes in secondary structure of chymotrypsin: Effect of pH and pressure on the salt bridge [J]. Biochim Biophys Acta, 1989, 999(2): 192-197.
[57]  Hei D J, Clark D S. Pressure stabilization of proteins from extreme thermophiles [J]. Appl Environ Microbiol, 1994, 60(3): 932-939.
[58]  Day R, García A E. Water penetration in the low and high pressure native states of ubiquitin [J]. Proteins Struct Funct Bioinf, 2008, 70(4): 1175-1184.
[59]  Dadarlat V M, Post C B. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions [J]. Biophys J, 2006, 91(12): 4544-4554.
[60]  Wang J Y. Biochemistry [M]. Beijing: Higher Education Press, 2002: 626. (in Chinese)
[61]  王镜岩. 生物化学 [M]. 北京: 高等教育出版社, 2002: 626.
[62]  Hayert M, Perrier-Cornet J M, Gervais P. A simple method for measuring the pH of acid solutions under high pressure [J]. J Phys Chem A, 1999, 103(12): 1785-1789.
[63]  Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy [J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780.
[64]  Imai T, Sugita Y. Dynamic correlation between pressure-induced protein structural transition and water penetration [J]. J Phys Chem B, 2010, 114(6): 2281-2286.
[65]  Collins M D, Hummer G, Quillin M L, et al. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation [J]. Proc Natl Acad Sci, 2005, 102(46): 16668-16671.
[66]  Hédoux A, Guinet Y, Paccou L. Analysis of the mechanism of lysozyme pressure denaturation from Raman spectroscopy investigations, and comparison with thermal denaturation [J]. J Phys Chem B, 2011, 115(20): 6740-6748.
[67]  Grigera J R, McCarthy A N. The behavior of the hydrophobic effect under pressure and protein denaturation [J]. Biophys J, 2010, 98(8): 1626-1631.
[68]  Ando N, Barstow B, Baase W A, et al. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation [J]. Biochemistry, 2008, 47(42): 11097-11109.
[69]  Akasaka K, Li H, Yamada H, et al. Pressure response of protein backbone structure: Pressure-induced amide 15N chemical shifts in BPTI [J]. Protein Sci, 1999, 8(10): 1946-1953.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133