全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

新型协同转动六节点三边形复合材料壳单元

DOI: 10.6052/j.issn.1000-4750.2013.11.1045

Keywords: 协同转动法,复合材料壳单元,矢量型转动变量,大转动,混合公式法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为分析复合材料层合板壳结构,提出了一种协同转动六节点三边形复合材料曲壳单元。不同于现有的其它协同转动有限单元:1)该单元中采用了增量可加的矢量型转动变量,因而在非线性增量求解过程中更新节点转动变量非常简单;2)在计算应变能对局部节点变量的二阶偏微分时,微分的次序是可以交换的,并且通过链式微分计算应变能对整体节点变量的二阶偏微分时,微分的次序也是可以交换的,因此,得到的局部和整体坐标系下的切线刚度矩阵都是对称的;3)在此有限单元公式中引入了混合公式法,以减轻膜闭锁和剪切闭锁的不利影响。对4个典型算例进行了分析,并与其他文献的结果进行对比,该文提出的单元的可靠性和计算效率得到了验证。

References

[1]  Yang H T Y, Saigal S, Masud A, et al. A survey of recent shell finite elements [J]. International Journal for Numerical Methods in Engineering, 2000, 47(1/2/3): 101―127.
[2]  Zhang Y X, Yang C H. Recent developments in finite element analysis for laminated composite plates [J]. Composite Structures, 2009, 88(1): 147―157.
[3]  Carrera E. Theories and finite elements for multilayered, anisotropic, composite plates and shells [J]. Archives of Computational Methods in Engineering, 2002, 9(2): 87―140.
[4]  Carrera E, Miglioretti F, Petrolo M. Accuracy of refined finite elements for laminated plate analysis [J]. Composite Structures, 2011, 93(5): 1311―1327.
[5]  Yang P C, Norris C H, Stavsky Y. Elastic wave propagation in heterogeneous plates [J]. International Journal of Solids and Structures, 1966, 2(4): 665―684.
[6]  Reissner E. The effect of transverse shear deformation on the bending of elastic plates [J]. Journal of Applied Mechanics-Transactions of the ASME, 1945, 12(2): A69―A77.
[7]  Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates [J]. Journal of Applied Mechanics-Transactions of the ASME, 1951, 18(1): 31―38.
[8]  Aydogdu M. A new shear deformation theory for laminated composite plates [J]. Composite Structures, 2009, 89(1): 94―101.
[9]  Vlasov B F. On the equations of bending of plates [J]. Dokla Ak. Nauk. Azerbeijanskoi-SSR, 1957, 3(5): 955―979.
[10]  Reddy J N. A simple higher-order theory for laminated composite plates [J]. Journal of Applied Mechanics- Transactions of the ASME, 1984, 51(4): 745―752.
[11]  章向明, 王安稳, 梅炎祥. 复合材料大变形任意加筋壳单元[J]. 工程力学, 2003, 20(5): 134―138.
[12]  Zhang Xiangming, Wang Anwen, Mei Yanxiang. A large deformation shell element for eccentrically arbitrary stiffened composite shells [J]. Engineering Mechanics, 2003, 20(5): 134―138. (in Chinese)
[13]  王振, 孙秦. 基于共旋三角形厚薄通用壳元的几何非线性分析[J]. 工程力学, 2014, 31(5): 27―33.
[14]  Wang Zhen, Sun Qin. Geometrically nonlinear analysis using a corotational triangular thick and thin shell element [J]. Engineering Mechanics, 2014, 31(5): 27―33. (in Chinese)
[15]  岑松, 龙驭球, 姚振汉. 基于一阶剪切变形理论的新型复合材料层合板单元[J]. 工程力学, 2002, 19(1): 1―8. Cen Song, Long Yuqiu, Yao Zhenhan. A new element based on the first-order shear deformation theory for the analysis of laminated composite plates [J]. Engineering Mechanics, 2002, 19(1): 1―8. (in Chinese)
[16]  岑松, 龙驭球, 姚振汉. 用杂交法改善应力解的新型复合材料层合板单元[J]. 工程力学, 2002, 19(2): 7―16.
[17]  Cen Song, Long Yuqiu, Yao Zhenhan. A new displacement-based element for the analysis of laminated composite plates with hybrid-enhanced stress solutions [J]. Engineering Mechanics, 2002, 19(2): 7―16. (in Chinese)
[18]  Felippa C A, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21): 2285―2335.
[19]  安效民, 徐敏. 一种几何大变形下的非线性气动弹性求解方法[J]. 力学学报, 2011, 43(1): 97―104.
[20]  An Xiaomin, Xu Min. An improved geometrically nonlinear algorithm and its application for nonlinear aeroelasticity [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 97―104. (in Chinese)
[21]  Li Z X, Izzuddin B A, Vu-Quoc L. A 9-node co-rotational quadrilateral shell element [J]. Computational Mechanics, 2008, 42(6): 873―884.
[22]  Li Z X, Liu Y F, Izzuddin B A, et al. A stabilized co-rotational curved quadrilateral composite shell element [J]. International Journal for Numerical Methods in Engineering, 2011, 86(8): 975―999.
[23]  Li Z X, Zhuo X, Vu-Quoc L, Izzuddin B A, Wei H Y. A 4-node co-rotational quadrilateral elasto-plastic shell element using vectorial rotational variables [J]. International Journal for Numerical Methods in Engineering, 2013, 95(3): 181―211.
[24]  Li Z X, Vu-Quoc L. An efficient co-rotational formulation for curved triangular shell element [J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1029―1062.
[25]  李忠学, 刘永方, 徐晋, 等. 稳定化的新型协同转动四边形曲壳单元[J]. 工程力学, 2010, 27(9): 27―34.
[26]  Li Zhongxue, Liu Yongfang, Xu Jin, et al. A stabilized co-rotational curved quadrilateral shell element [J]. Engineering Mechanics, 2010, 27(9): 27―34. (in Chinese)
[27]  Li Z X. A co-rotational formulation for 3D beam element using vectorial rotational variables [J]. Computational Mechanics, 2007, 39(3): 293―308.
[28]  李忠学. 结构仿生学与新型有限元计算理论[M]. 北京: 科学出版社, 2009: 124―158.
[29]  Li Zhongxue. Bionics and Computational Theory Using Advanced Finite Element Methods [M]. Beijing: Science Press, 2009: 124―158. (in Chinese)
[30]  Teh L H, Clarke M J. Symmetry of tangent stiffness matrices of 3D elastic frame [J]. Journal of Engineering Mechanics, ASCE, 1999, 125(2): 248―251.
[31]  Izzuddin B A. Conceptual issues in geometrically nonlinear analysis of 3D framed structures [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(8/9/10): 1029―1053.
[32]  Ritto-Corrêa M, Camotim D. Work-conjugacy between rotation-dependent moments and finite rotations [J]. International Journal of Solids and Structures, 2003, 40(11): 2851―2873.
[33]  Crisfield M A. Nonlinear Finite Element Analysis of Solid and Structures, Vol.1: Essentials [M]. Chichester: John Wiley & Sons, 1991: 236―237.
[34]  Simo J C. (Symmetric) Hessian for geometrically nonlinear models in solid mechanics, intrinsic definition and geometric interpretation [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 96(2): 189―200.
[35]  Kim D N, Bathe K J. A triangular six-node shell element [J]. Computers & Structures, 2009, 87(23): 1451―1460.
[36]  Li Z X, Izzuddin B A. A mixed co-rotational curved quadrilateral shell element [J]. International Journal of Structural Engineering, 2011, 2(2): 188―208.
[37]  To C W S, Wang B. Hybrid strain based geometrically nonlinear laminated composite triangular shell finite elements [J]. Finite Elements in Analysis and Design, 1999, 33(2): 83―124.
[38]  Roh H Y, Cho M. The application of geometrically exact shell elements to B-spline surfaces [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(23): 2261―2299.
[39]  Crisfield M A. Nonlinear finite element analysis of solids and structures, Vol. 2: advanced topics [M]. Chichester: John Wiley & Sons, 1991: 36―38.
[40]  Reddy J N. Mechanics of laminated composite plates and shells: theory and analysis/JN reddy [M]. CRC Press, 2004: 96―99.
[41]  Kreja I, Schmidt R. Large rotations in first-order shear deformation FE analysis of laminated shells [J]. International Journal of Nonlinear Mechanics, 2006, 41(1): 101―123.
[42]  Kim K D, Han S C, Suthasupradit S. Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains [J]. International Journal of Non-Linear Mechanics, 2007, 42(6): 864―881.
[43]  Basar Y, Ding Y H, Schultz R. Refined shear-deformation models for composite laminates with finite rotations [J]. International Journal of Solids and Structures, 1993, 30(19): 2611―2638.
[44]  Gal E, Levy R. The geometric stiffness of triangular composite-materials shell elements [J]. Computers and Structures, 2005, 83(28/29/30): 2318―2333.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133