全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

离散-连续多尺度桥域耦合动力分析方法

DOI: 10.6052/j.issn.1000-4750.2013.11.1103, PP. 92-98

Keywords: 多尺度方法,离散-连续介质耦合,离散元,有限差分法,动力分析,虚假反射

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于离散介质理论和连续介质理论,提出离散-连续多尺度动力耦合分析方法,不需要任何附加的过滤和阻尼就能有效地消除高频波的虚假反射。根据实际需求将计算模型划分为连续介质域和离散介质域,其中连续介质域采用有限差分网格模拟;离散介质域采用离散元颗粒模拟。为保证网格与颗粒两种不同介质之间的能量协调,引入拉格朗日乘子将离散元模型和有限差分模型之间的约束关系,通过能量势函数隐含到动力方程中,推导出多尺度域的动力控制方程。基于动力显式算法求解所建立的离散-连续多尺度动力耦合体系,在通用的离散元(PFC)和有限差分法(FLAC)软件中二次开发编制计算程序,从而实现离散-连续多尺度动力耦合算法。通过算例验证,计算结果与分别采用离散元和有限差分法所得结果一致,说明了该多尺度方法可以有效地消除高频波在离散-连续介质界面上的虚假反射现象。

References

[1]  张政华, 毕丹, 李兆霞. 基于结构多尺度模拟和分析的大跨斜拉桥应变监测传感器优化布置研究[J]. 工程力学, 2009, 26(1): 142―148.
[2]  Zhang Zhenghua, Bi Dan, Li Zhaoxia. Research on optimal placement of strain sensors in deck of cable-stayed bridges based on multi-scale modeling and analysis [J]. Engineering Mechanics, 2009, 26(1): 142―148. (in Chinese)
[3]  张锐, 唐志平. 三维离散元与壳体有限元耦合的时空多尺度方法[J]. 工程力学, 2010, 27(4): 44―50.
[4]  Zhang Rui, Tang Zhiping. A multiscale method of time and spaceby coupling Three-dimensionaldem and cylindrical shell FEM [J]. Engineering Mechanics, 2010, 27(4): 44―050. (in Chinese)
[5]  陈志文, 李兆霞, 卫志勇. 土木结构损伤多尺度并发计算方法及其应用[J]. 工程力学, 2012, 29(10): 205―210.
[6]  Chen Zhiwen, Li Zhaoxia, Wei Zhiyong. Concurrent multi-scale computational method for Damage analyses of civil structures [J]. Engineering Mechanics, 2012, 29(10): 205―210. (in Chinese)
[7]  Cundall P A, Strack O D. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47―65.
[8]  Oñate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems [J]. Computer Methods In Applied Mechanics And Engineering, 2004, 193(27/28/29): 3087―3128.
[9]  Azevedo N M, Lemos J. Hybrid discrete element/finite element method for fracture analysis [J]. Computer Methods In Applied Mechanics And Engineering, 2006, 195(33): 4579―4593.
[10]  Lei Z, Zang M. An approach to combining 3D discrete and finite element methods based on penalty function method [J]. Computational Mechanics, 2010, 46(4): 609―619.
[11]  Zang M, Gao W, Lei Z. A contact algorithm for 3D discrete and finite element contact problems based on penalty function method [J]. Computational Mechanics, 2011, 48(5): 541―550.
[12]  Zhao G F, Khalili N, Fang J, Zhao J. A coupled distinct lattice spring model for rock failure under dynamic loads [J]. Computers and Geotechnics, 2012(42): 1―20.
[13]  Saiang D. Stability analysis of the blast-induced damage zone by continuum and coupled continuum- discontinuum methods [J]. Engineering Geology, 2010, 116(1/2): 1―11.
[14]  周健, 金炜枫. 基于耦合方法的挡土墙地震响应的数值模拟[J]. 岩土力学, 2010, 31(12): 3949―3957.
[15]  Zhou Jian, Jin Weifeng. Coupled approach based numerical simulation of a retaining wall under seismic excitation. Rock and Soil Mechanics, 2010, 31(12): 3949―3957. (in Chinese )
[16]  张华, 陆阳, 余建华. 连续-离散介质动力耦合模型在斜坡堆积体地震响应分析中的应用[J]. 公路交通科技, 2011, 28(5): 6―11, 27.
[17]  Zhang Hua, Lu Yang, Yu Jianhua. Application of continuum and discrete medium dynamic coupling model in seismic response analysis of a deposit covered slope [J]. Journal of Highway and Transportation Research and Development. 2011, 28(5): 6―11, 27. (in Chinese )
[18]  周健, 邓益兵, 贾敏才, 王家全. 基于颗粒单元接触的二维离散-连续耦合分析方法[J]. 岩土工程学报, 2010, 32(10): 1479―1484.
[19]  Zhou Jian, Deng Yibing, Jia Mincai, Wang Jiaquan. coupling method of two-dimensional discontinuum- continuum based on contact between particle and element [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1479―1484. (in Chinese )
[20]  金炜枫, 周健, 张姣. 基于离散-连续耦合方法的地下结构在地震中破坏过程模拟[J]. 固体力学学报, 2013, 34(1): 93―102.
[21]  Jin Weifeng, Zhou Jian, Zhang Jiao. collapse simulation of the subway structure during the earthquake based on the two-scale coupled method [J]. Chinese Journal of Solid Mechanics, 2013, 34(1): 93―102. (in Chinese )
[22]  Adelman S, Doll J. Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids [J]. The Journal of Chemical Physics, 1976(64): 2375.
[23]  Doll J, Dion D. Generalized Langevin equation approach for atom/solid-surface scattering: Numerical techniques for Gaussian generalized Langevin dynamics [J]. The Journal of Chemical Physics, 1976(65): 3762.
[24]  Celep Z, Bažant Z P. Spurious reflection of elastic waves due to gradually changing finite element size [J]. International Journal for Numerical Methods in Engineering, 1983, 19(5): 631―646.
[25]  Yu H T, Yuan Y, Bobet A. Multiscale method for long tunnels subjected to seismic loading [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(4): 374―398.
[26]  Yu H T, Yuan Y, Qiao Z Z, Gu Y, Yang Z H, Li X D. Seismic analysis of a long tunnel based on multi-scale method [J]. Engineering Structures, 2013(49): 572―587.
[27]  禹海涛, 袁勇. 地下结构多尺度动力分析方法[J]. 力学学报, 2012, 44(6): 1028―1036.
[28]  Yu Haitao, Yuan Yong. Multi-scale dynamic analysis method for underground structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1028―1036. (in Chinese)
[29]  Chamoin L, Prudhomme S, Ben Dhia H, Oden T. Ghost forces and spurious effects in atomic-to-continuum coupling methods by the Arlequin approach [J]. International Journal for Numerical Methods in Engineering, 2010, 83(8/9): 1081―1113.
[30]  Xiao S P, Belytschko T. A bridging domain method for coupling continua with molecular dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17/18/19/20): 1645―1669.
[31]  Rojek J, Oñate E. Multiscale analysis using a coupled discrete/finite element model [J]. Interaction and Multiscale Mechanics, 2007, 1(1): 1―31.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133