全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

一个瞬态温度场区间上下界估计的数值方法

, PP. 7-13

Keywords: 瞬态热传导,不确定性,区间估计,时域分段自适应,Taylor展开

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种求解带有区间不确定性参数的瞬态热传导问题的数值方法。利用Taylor展开和区间分析技术,建立温度区间量与不确定参数区间量的确定性关系,然后采用时域分段自适应算法和有限元技术,递推计算温度场的区间半径及区间中值,以估算温度场不确定区间的上下界。自适应计算可根据时间步长的变化,使计算在各离散时段达到给定的计算精度,从而保证整个时域的计算精度。在算例分析中,通过与组合方法、概率方法的比较,说明了所提方法的有效性,并探讨了Taylor展开阶次与计算步长对计算结果的影响。

References

[1]  夏新林, 唐尧. 求解飞机蒙皮耦合热效应的壁面热流函数法[J]. 工程热物理学报, 2006, 27(4): 635―637. Ai Qing, Xia Xinlin, Tang Yao. The wall heat flux function for solving coupled heat transfer of aircraft skin [J]. Journal of Engineering Thermophysics, 2006, 27(4): 635―637. (in Chinese)
[2]  宣益民. 卫星太阳能电池板热设计参数的灵敏度分析[J]. 南京理工大学学报(自然科学版), 2006, 30(2): 178―181. Han Yuge, Xuan Yimin. Analysis for the solar array of the satellite thermal design [J]. Journal of Nanjing University of Science and Technology (Nature Science), 2006, 30(2): 178―181. (in Chinese)
[3]  沈惠申. 热环境下功能梯度材料板的自由振动和动力响应[J]. 工程力学, 2005, 22(3): 224―227. Huang Xiaolin, Shen Huishen. Free vibration and dynamic response of functionally graded plates in thermal environments [J]. Engineering Mechanics, 2005, 22(3): 224―227. (in Chinese)
[4]  曹峰云, 刘明治, 何恩. 星载大型可展开天线太空辐射热变形计算[J]. 西安电子科技大学学报, 2004, 31(1): 28―31. Zhu Minbo, Cao Fengyun, Liu Mingzhi, He En. The calculation of thermal radiation distortion for large deployable antennas in satellites [J]. Journal of Xidian University, 2004, 31(1): 28―31. (in Chinese)
[5]  张光辉, 罗文军. 旋转齿轮瞬时接触应力和温度的分析模拟[J]. 机械工程学报, 2004, 40(8): 24―29. Long Hui, Zhang Guanghui, Luo Wenjun. Modelling and analysis of transient contact stress and temperature of involute gears [J]. Chinese Journal of Mechanical Engineering, 2004, 40(8): 24―29. (in Chinese)
[6]  朱湘赓. 中厚板热后屈曲分析[J]. 应用数学和力学, 1995, 16(5): 443―450. Shen Huishen, Zhu Xianggeng. Thermal postbuckling analysis of moderately thick plates [J]. Applied Mathematics and Mechanics, 1995, 16(5): 443―450. (in Chinese)
[7]  陈建军, 张建国, 云永琥, 马洪波. 随机参数梁在考虑热弹耦合下的动力响应分析[J]. 工程力学, 2013, 30(5): 265―276. Yan Bin, Chen Jianjun, Zhang Jianguo, Yun Yonghu, Ma Hongbo. Dynamic response analysis of stochastic beam structures under thermoelastic coupling [J]. Engineering Mechanics, 2013, 30(5): 265―276. (in Chinese)
[8]  许希武. 双向梯度复合材料板瞬态热应力分析[J]. 工程力学, 2013, 30(2): 434―442. Chen Kang, Xu Xiwu. Transient thermal stress analysis of two-directional graded composite plates [J]. Engineering Mechanics, 2013, 30(2): 434―442. (in Chinese)
[9]  周莉, 杨牧. 谐波热作用下墙体温度场的解析解[J]. 工程力学, 2012, 29(9): 193―214. Liang Jianguo, Zhou Li, Yang Mu. Analytical solution for temperature field in walls subjected to harmonic heat [J]. Engineering Mechanics, 2012, 29(9): 193―214. (in Chinese)
[10]  A, Childs P, Sayma N, Long C A. A disc to air heat flux error and uncertainty analysis applied to a turbo-machinery test rig design [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223(3): 659―674.
[11]  Blackwell, James V Beck. A technique for uncertainty analysis for inverse heat conduction problems [J]. International Journal of Heat and Mass Transfer, 2010(53): 753―759.
[12]  P L, Monde M. Estimation of uncertainty in an analytical inverse heat conduction solution [J]. Experimental Heat Transfer, 2009(22): 129―143.
[13]  K Bodla, Jayathi Y Murthy, Suresh V Garimella. Optimization under uncertainty applied to heat sink design [J]. Journal of Heat Transfer, 2013(135): 1―13.
[14]  Okuyama, Yoshinori Onishi. System parameter identification theory and uncertainty analysis methods for multi-zone building heat transfer and infiltration [J]. Building and Environment, 2012(54): 39―52.
[15]  A, Struzika C, Gaudierb F. Uncertainty and sensitivity analysis of the nuclear fuel thermal behavior [J]. Nuclear Engineering and Design, 2012(253): 200―210.
[16]  S S, Berke L. Analysis of uncertain structural systems using interval analysis [J]. AIAA Journal, 1997, 35(4): 727―735.
[17]  Three versions of the finite element method based on concepts of either stochasticity, fuzziness or anti-optimization [J]. Applied Mechanics Review, 1998, 51(3): 209―218.
[18]  R L, Mullen R L. Uncertainty in mechanics problems-interval-based [J]. Approach Journal of Engineering Mechanics, 2001, 127(6): 557―566.
[19]  Z P, Elishakof I. Anti-optimization of structures with large uncertain-but-non random parameters via interval analysis [J]. Computers Methods in Applied Mechanics and Engineering, 1998, 152(3/4): 361―372.
[20]  S. Anti-optimization of uncertain structures using interval analysis [J]. Computers and Structures, 2001, 79(4): 421―430.
[21]  D V. Identification of parameters of linear interval controllable systems with interval observation [J]. Journal of Computer and Systems Sciences International, 2008, 47(6): 861―865.
[22]  Z P, Ni Z. An inequality model for solving interval dynamic response of structures with uncertain-but- bounded parameters [J]. Applied Mathematical Modelling, 2010, 34(8): 2166―2177.
[23]  S, Valente C, Brancaleoni F. An interval uncertainty based method for damage identification [J]. Key Engineering Materials, 2007(347): 551―556.
[24]  S C, Mello U T, Muhanna R L, et al. Uncertainty in thermal basin modeling: An interval element finite element approach [J]. Reliable Computing, 2004, 12(6): 451―470.
[25]  J P, Chen J J, Liu G L, Li J S. Numerical analysis of transit temperature field with interval parameters [J]. Journal of University of Electronic Science and Technology of China, 2009, 38(3): 463―466.
[26]  陈建军, 阎彬. 区间参数鼓式制动器简化模型的瞬态温度场数值分析[J]. 北京邮电大学学报, 2011, 34(6): 10―14. Jia Aiqin, Chen Jianjun, Yan Bin. Numerical analysis on transient temperature field of a braking drum with interval parameters [J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(6): 10―14. (in Chinese)
[27]  Haitian, Zhao Xiao. A temporally-piecewise adaptive algorithm to solve transient convection- diffusion heat transfer problems [J]. Computer Modelling in Engineering and Science, 2011, 1865(1): 1―20.
[28]  有限单元法[M]. 北京: 清华大学出版社, 2003: 447. Wang Xucheng. Finite element method [M]. Beijing: Tsinghua University Press, 2003: 447. (in Chinese)
[29]  R W. Morgan K, Tomas H R. The finite element method in heat transfer analysis [M]. New York: John Wiley & Sons, 1996: 1―20.
[30]  G, Herzberger J. Introduction to interval computations [M]. New York, Academic Press, 1983: 17―35.
[31]  R E. Methods and applications of interval analysis [M]. London, Pretice-Hall, 1979: 21―31.
[32]  Z P, Wang X J. Comparison between non-probabilistic interval analysis method and probabilistic approach in static response problem of structures with uncertain-but-bounded parameters [J]. Communications in Numerical Methods in Engineering, 2004, 20(4): 279―290.
[33]  O C, Taylor R L. The finite element method [M]. 5th ed. Butterworth-Heinemann, Oxford, 2000: 279―325.
[34]  S S, Berke L. Analysis of uncertain structural systems using interval analysis [J]. AIAA Journal, 1997, 35(4): 727―735.
[35]  S H, Lian H D, Yang X W. Interval static displacement analysis for structures with interval parameters [J]. International Journal For Numerical Methods in Engineering, 2002, 53(2): 393―407.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133