T, Chen L. Recent and prospective development of functionally graded materials in Japan [J]. Materials Science Forum, 1999(308): 509―514.
[2]
李现敏, 文献民. 不同变形状态下变物性梯度功能材料板瞬态热应力[J]. 工程力学, 2006, 23(3): 49―55.[2] Xu Yangjian, Li Xianmin, Wen Xianmin. Transient thermal stresses of functionally gradient material plate with temperature-dependent material properties under different deformation states [J]. Engineering Mechanics, 2006, 23(3): 49―55. (in Chinese)
[3]
黄晨光, 段祝平. 含FGM的涂层结构中热残余应力的分析与优化[J]. 工程力学, 2001, 18(2): 99―105.[3] Zhang Rongjing, Huang Chenguang, Duan Zhuping. Simulation and optimization of thermal residual stress in coating structure with functionally graded material layer [J]. Engineering Mechanics, 2001, 18(2): 99―105.(in Chinese)
[4]
S G. Theory of Elasticity of an Anisotropic Body [M]. Moscow: Mir Publishers, 1981: 90―93.
[5]
C O, Chan A M. The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials [J]. Journal of Elasticity, 1999, 55(1): 43―59.
[6]
M, Sohrabpour S, Elsam M R. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads [J]. International Journal of Pressure Vessels and Piping, 2002, 79(7): 493―497.
[7]
于涛. 均布荷载作用下功能梯度悬臂梁弯曲问题的解析解[J]. 固体力学学报, 2006, 27(1): 15―20.[7] Zhong Zheng, Yu Tao. A general solution of a clamped functi- onally graded cantilever-beam under uniform loading [J]. Acta Mechanica Solida Sinica, 2006, 27(1): 15―20. (in Chinese)
[8]
于涛. 功能梯度悬臂梁弯曲问题的解析解[J]. 同济大学学报(自然科学版), 2006, 34(4): 443―447.[8] Zhong Zheng, Yu Tao. Analytical bending solution of functi- onally graded cantilever-beam [J]. Journal of Tongji University (Natural Science), 2006, 34(4): 443―447. (in Chinese)
[9]
丁皓江, 陈伟球. 线性分布载荷作用下功能梯度各向异性悬臂梁的解析解[J]. 应用数学和力学, 2007, 28(7): 763―768.[9] Huang Dejin, Ding Haojiang, Chen Weiqiu. Analytical solution for functionally graded anisotropic cantilever beam Subjected to linearly distributed load [J]. Applied Mathematics and Mechanics, 2007, 28(7): 763―768. (in Chinese)
[10]
李世荣. 一阶剪切理论下功能梯度梁与均匀梁静态解之间的相似关系[J]. 工程力学, 2012, 29(4): 161―167.[10] Xu Hua, Li Shirong. Analogous relationship between the static solutions of functionally graded beams and homogenous beams based on the first-order shear deformation theory [J]. Engineering Mechanics, 2012, 29(4): 161―167. (in Chinese)
[11]
J. Bending of inhomogeneous curved bars. International Journal of Solids and Structures [J]. 2007,44(11): 4158―4166.
[12]
孟庆春, 张行. 复合材料层合曲梁分层问题的解析解法[J]. 复合材料学报, 2003, 20(5): 142―146.[12] Bai Jing, Meng Qingchun, Zhang Xing. Analytical method of solution on delamination in symmetrical orthogonal composite laminated curved beams [J]. Acta Materiae Compositae Sinica, 2003, 20(5): 142―146. (in Chinese)
[13]
Zhifei. Bending behavior of piezoelectric curved Actuator. Smart Materials and Structures [J], 2005,14(4): 835―842.
[14]
Zhifei, Zhang Taotao. Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter [J]. Smart Materials and Structures, 2008, 17(4): 1―7.
[15]
Taotao, Shi Zhifei. Two-dimensional exact analysis for piezoelectric curved actuators [J]. Journal of Micromechanics and Microengineering, 2006, 16(3): 640―647.
[16]
王玮, 武际可. 弹性力学教程 [M]. 北京: 北京大学出版社, 2002: 269―280.[16] Wang Minzhong, Wang Wei, Wu Jike. Elastic mechanics [M]. Beijing: Peking University Press, 2002: 269―280. (in Chinese)