全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

一维Ritz有限元超收敛计算的EEP法简约格式的误差估计

DOI: 10.6052/j.issn.1000-4750.2014.11.0973

Keywords: 有限元,一维问题,超收敛,收敛阶,单元能量投影

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文对一维问题Ritz有限元后处理超收敛计算的EEP(单元能量投影)法简约格式给出误差估计的数学证明,即对足够光滑问题的(>1)次单元的有限元解答,采用EEP法简约格式计算得到的单元内任一点位移和应力(导数)超收敛解均可以达到的收敛阶,即位移比常规有限元解的收敛阶至少高一阶,而应力则至少高二阶。

References

[1]  J, Dupont T. Galerkin approximations for the two point boundary problems using continuous piecewise polynomial spaces [J]. Numer Math, 1974, 22: 99―109.
[2]  G, Fix G. An analysis of the finite element method [M]. London: Prentice-Hall, 1973.
[3]  王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21(2): 1―9.[3] Yuan Si, Wang Mei, An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM [J]. Engineering Mechanics, 2004, 21(2): 1―9. (in Chinese)
[4]  王旭, 邢沁妍, 叶康生. 具有最佳超收敛阶的EEP法计算格式-I算法公式[J]. 工程力学, 2007, 24(10): 1―5.[4] Yuan Si, Wang Xu, Xing Qinyan, Ye Kangsheng. A scheme with optimal order of super-convergence based on the element energy projection method-I formulation [J]. Engineering Mechanics, 2007, 24(10): 1―5. (in Chinese)
[5]  邢沁妍, 王旭, 叶康生. 具有最佳超收敛阶的EEP法计算格式-II数值算例[J]. 工程力学, 2007, 24(11): 1―6.[5] Yuan Si, Xing Qinyan, Wang Xu, Ye Kangsheng. A scheme with optimal order of super-convergence based on the element energy projection method-II numerical results [J]. Engineering Mechanics, 2007, 24(11): 1―6. (in Chinese)
[6]  赵庆华. 具有最佳超收敛阶的EEP法计算格式- III 数学证明[J]. 工程力学, 2007, 24(12): 1―5.[6] Yuan Si, Zhao Qinghua. A scheme with optimal order of super-convergence based on the element energy projection method-III mathematical analysis [J]. Engineering Mechanics, 2007, 24(12): 1―5. (in Chinese)
[7]  单元能量投影法的数学分析[D]. 湖南长沙: 湖南大学, 2007.[7] Zhao Qinghua. The mathematical analysis on Element Energy Projection method [D]. Changsha, Hunan: Hunan University, 2007. (in Chinese)
[8]  徐俊杰, 叶康生, 邢沁妍. 二维自适应技术新进展: 从有限元线法到有限元法[J]. 工程力学, 2011, 28(增刊II): 1―10. Yuan Si, Xu Junjie, Ye Kangsheng, Xing Qinyan. New progress in self-adaptive analysis of 2D problems: from FEMOL to FEM [J]. Engineering Mechanics, 2011, 28 (Suppl II): 1―10. (in Chinese)
[9]  杜炎, 邢沁妍, 叶康生. 一维EEP自适应技术新进展: 从线性到非线性[J]. 工程力学, 2012, 29(增刊II): 1―8. Yuan Si, Du Yan, Xing Qinyan, Ye Kangsheng. New progress in self-adaptive analysis of 1D problems: from linear to nonlinear [J]. Engineering Mechanics, 2012, 29(Suppl II): 1―8. (in Chinese)
[10]  Si, Du Yan, Xing Qinyan, Ye Kangsheng. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1223―1232.[10] (参考文献[6]―[10]转第16页)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133