全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2011 

Daubechies条件小波混合有限元法在梁计算中的应用

, PP. 208-214

Keywords: 数值计算,Daubechies小波,条件小波有限元,广义变分原理,混合有限元法

Full-Text   Cite this paper   Add to My Lib

Abstract:

常规的Daubechies小波有限元法是以挠度为基本未知量的单变量有限元法,其弯矩函数需要通过挠度函数的二阶求导间接求解,故弯矩的计算精度一般比挠度低。此外,目前常用的Daubechies小波有限元法需要借助于转换矩阵引入位移边界条件,大大影响了计算精度。结合广义变分原理,将边界条件作为附加条件构造修正泛函,以该修正泛函的驻值条件建立求解矩阵方程,进而解得未知场函数,可以有效提高计算精度,即为Daubechies条件小波有限元法。在此基础上,结合Hellinger-Reissner广义变分原理,以力和位移为插值函数,可以建立Daubechies条件小波混合有限元法。由于该法能一次同时解得位移与力的场函数,并且内力的求解独立于位移,因而内力的求解精度较高。以梁单元为例,推导出了Daubechies条件小波混合有限元方程,并通过算例验证了该方法的实用性和有效性。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133