全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

含摩擦柱铰链平面多体系统动力学的建模和数值方法

, PP. 193-199

Keywords: 多体系统,转动铰链,Lagrange乘子,摩擦,粒子群算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

以含摩擦柱铰链平面多体系统为研究对象,建立其动力学方程并给出相应的数值计算方法。首先,建立了含摩擦转动柱铰链的力学模型。在此基础上,应用第一类Lagrange方程给出了该类系统的动力学方程,将Lagrange乘子与柱铰链的法向约束力建立了对应关系,并给出了柱铰链摩擦力的广义力。由于摩擦力的存在,使得该方程是关于Lagrange乘子的分段连续的非线性代数方程组,该文对此采用混合算法:对于连续段(物体相对转动的角速度不为零时),采用拟牛顿算法和龙格-库塔法求解方程;在不连续点(物体相对转动的角速度为零时),通过粒子群算法(PSO)、试算法和龙格-库塔法求解方程,克服了方程在不连续处Lagrange乘子(法向约束力)的初值不易选取的困难。最后,通过算例说明了该算法的有效性和可行性。

References

[1]  刘丽兰, 刘宏昭, 吴子英, 王忠民. 机械系统中摩擦模型的研究进展[J]. 力学进展, 2008, 38(2): 201-213. Liu Lilan, Liu Hongzhao, Wu Ziying, Wang Zhongmin. An overview of friction models in mechanical systems[J]. Advances in Mechanics, 2008, 38(2): 201-213. (in Chinese)
[2]  高海平, 王琪, 王士敏, 等. 单-双边约束多体系统的线性互补建模与数值积分方法[J]. 振动与冲击, 2008, 27(8): 38-41. Gao Haiping, Wang Qi, Wang Shimin, et al. Linear complementarity model and numerical integration scheme of multibody system with unilateral and bilateral constraints [J]. Journal of Vibration and Shock, 2008, 27(8): 38-41. (in Chinese)
[3]  富立, 王琪. 含摩擦双边约束多体系统的Time- Stepping 方法[J]. 自然科学进展, 2009, 19(5): 526- 531. Fu Li, Wang Qi. Time-stepping for multibody dynamics with friction-affected bilateral constraints [J]. Progress in Natural Science, 2009, 19(5): 526-531. (in Chinese)
[4]  Klepp H J. The convergence of iterative acceleration computation for multi-body systems with friction [J]. Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1997, 48(2): 272-289.
[5]  Klepp H J. Trial-and-error procedure for single degreeof- freedom systems with friction-affected sliding joints[J]. Journal of Sound and Vibration, 1996, 191: 598- 605.
[6]  彭慧莲, 王士敏, 王琪, 郭易圆. 双面约束多点摩擦多体系统的建模和数值方法[J]. 力学学报, 2009, 41(1): 105-111. Peng Huilian, Wang Shimin, Wang Qi, Guo Yiyuan. Modeling and simulation of multi-body systems with multi-friction and fixed bilateral constraint [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 105-111. (in Chinese)
[7]  潘振宽, 赵维加, 洪嘉振, 等. 多体系统动力学微分/ 代数方程组数值方法[J]. 力学进展, 1996, 26(1): 28- 40. Pan Zhenkuan, Zhao Weijia, Hong Jiazhen, et al. On numerical algorithms for differential/algebraic equations of motion of multibody systems [J]. Advances in Mechanics, 1996, 26(1): 28-40. (in Chinese)
[8]  曾建潮, 介婧, 崔志华. 微粒群算法[M]. 北京: 科学出版社, 2004. Zeng Jianchao, Jie Jing, Cui Zhihua. Particle swarm optimization [M]. Beijing: Science Press, 2004. (in Chinese)
[9]  张建科, 王晓智, 刘三阳, 等. 求解非线性方程及方程组的粒子群算法 [J]. 计算机工程与应用, 2006(7): 56-58. Zhang Jianke, Wang Xiaozhi, Liu Sanyang, et al. Particle Swarm Optimization for solving nonlinear equation and system [J]. Computer Engineering and Applications, 2006(7): 56-58. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133