全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

基于物质点描述的双向渐进式拓扑优化方法

DOI: 10.6052/j.issn.1000-4750.2010.11.0842

Keywords: 拓扑优化,双向渐进式结构优化,灵敏度密度,连续体结构,物质点拓扑变量

Full-Text   Cite this paper   Add to My Lib

Abstract:

:为了克服连续体结构拓扑优化中的数值不稳定现象,定义了表征物质点及其领域有无的物质点拓扑变量,提出基于物质点描述的双向渐进式拓扑优化方法.基于过滤法构造拓扑变量场的插值函数,从而在拓扑优化模型中自然消除了棋盘格现象.为适用于不同单元类型和网格离散形式等,重新定义了灵敏度密度.通过二维数值算例对理论方法进行验证.结果表明:方法在连续体结构拓扑优化设计中具有可行性和有效性.

References

[1]  Xie Y M, Steven G P. Evolutionary structural optimization [M]. London: Springer, 1997: 1-188.
[2]  Young V, Querin O M, Steven G P. 3D and multiple load case bi-directional evolutionary structural optimization (BESO) [J]. Structural Optimization, 1999, 18(2): 183- 192.
[3]  Querin O M, Young V, Steven G P, et al. Computational efficiency and validation of bi-directional evolutionary structural optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(2): 559-573.
[4]  Li Q, Steven G P, Xie Y M. A simple checkerboard suppression algorithm for evolutionary [J]. Structural and Multidisciplinary Optimization, 2001, 22(3): 230-239.
[5]  Yang X Y, Xie Y M, Liu J S, et al. Perimeter control in the bidirectional evolutionary optimization method [J]. Structural and Multidisciplinary Optimization, 2003, 24(6): 430-440.
[6]  Matsui K, Terada K. Continuous approximation of material distribution for topology optimization [J]. International Journal for Numerical Methods in Engineering, 2004, 59(14): 1925-1944.
[7]  Rahmatalla S F, Swan C C. A Q4/Q4 continuum structural topology optimization implementation [J]. Structural and Multidisciplinary Optimization, 2004, 27(1): 130-135.
[8]  李震, 孙宝元, 钱敏, 等. 基于节点密度的柔性机构的 拓扑优化设计[J]. 计算力学学报, 2007, 24(2): 130- 134. Li Zhen, Sun Baoyuan, Qian Min, et al. Topology optimization design for compliant mechanisms based on nodal density [J]. Chinese Journal of Computational Mechanics, 2007, 24(2): 130-134. (in Chinese)
[9]  郭旭, 赵康. 基于拓扑描述函数的连续体结构拓扑优 化方法[J]. 力学学报, 2004, 36(5): 520-526. Guo Xu, Zhao Kang. A new topology description function based approach for structural topology optimization [J]. Acta Mechanica Sinica, 2004, 36(5): 520-526. (in Chinese)
[10]  龙凯, 左正兴. 连续体结构拓扑优化的节点独立连续 映射法[J]. 应用力学学报, 2009, 26(2): 212-217. Long Kai, Zuo Zhengxing. Node-based independent continuous mapping method for topological optimization of continuum structures [J]. Chinese Journal of Applied Mechanics, 2009, 26(2): 212-217. (in Chinese)
[11]  Long Kai, Zuo Zhengxing, Rehan H Zuberi. Study on parameters for topological variables field interpolated by moving least square approximation [J]. Acta Mechanica Solida Sinica, 2009, 22(2): 180-188.
[12]  龙凯, 左正兴. 物质点拓扑变量法在柔性机构设计中 的应用[J]. 计算机辅助设计与图形学学报, 2010, 22(1): 158-164. Long Kai, Zuo Zhengxing. Topology optimization for compliant mechanism using material point topological variable [J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(1): 158-164. (in Chinese)
[13]  Almeida S R M, Paulino G H, Silva E C N. A simple and effective inverse projection scheme for void distribution control in topology optimization [J]. Structural and Multidisciplinary Optimization, 20, 39(4): 359-371.
[14]  Zhou M, Rozvany G I N. On the validity of ESO type methods in topology optimization [J]. Structural and Multidisciplinary Optimization, 2001, 21(1): 80-83.
[15]  Huang X, Xie Y M. A new look at ESO and BESO optimization methods [J]. Structural and Multidisciplinary Optimization, 2008, 35(1): 89-92.
[16]  Gozvany G I N. A critical review of established methods of structural topology optimization [J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 217-237.
[17]  高彤, 张卫红, 朱继宏, 等. 循环对称结构静力学渐进 拓扑优化设计[J]. 机械工程学报, 2008, 44(3): 166- 172. Gao Tong, Zhang Weihong, Zhu Jihong, et al. Evolutionary static topology optimization of cyclic-symmetry structures [J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 166-172. (in Chinese)
[18]  刘书田, 贺丹. 渐进密度AESO 方法及其在热传导结 构拓扑优化中的应用[J]. 计算力学学报, 2009, 26(2): 151-156. Liu Shutian, He Dan. Progressive AESO algorithm and application in topology optimization of heat conduction structures [J]. Chinese Journal of Computational Mechanics, 2009, 26(2): 151-156. (in Chinese)
[19]  刘书田, 贺丹. 基于SIMP 插值模型的渐进结构优化 方法[J]. 计算力学学报, 2009, 26(6): 761-777. Liu Shutian, He Dan. SIMP-based evolutionary structural optimization method for topology optimization [J]. Chinese Journal of Computational Mechanics, 2009, 26(6): 761-777. (in Chinese)
[20]  Huang X, Xie Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method [J]. Finite Elements in Analysis and Design, 2007, 43(14): 1039-1049.
[21]  Huang X, Xie Y M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple material [J]. Computational Mechanics, 2009, 43(3): 393-401.
[22]  Andereassen E, Clausen A, Schevenels M, et al. Efficient topology optimization in MATLAB using 88 lines of code [J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16.
[23]  Huang Xiaodong, Xie Yimin. A further review of ESO type methods for topology optimization [J]. Structural and Multidisciplinary Optimization, 2010, 41(5): 671- 683.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133