全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

基于覆盖细化的数值流形法及其在裂纹扩展中的应用

DOI: 10.6052/j.issn.1000-4750.2012.07.0540, PP. 47-54

Keywords: 数值流形法,覆盖细化,裂纹扩展,数学覆盖,物理覆盖,流形单元

Full-Text   Cite this paper   Add to My Lib

Abstract:

数值流形法是一种基于数学覆盖和物理覆盖的双重覆盖方法,权函数设于数学覆盖上,而位移函数设于物理覆盖上。该文提出了一种基于数值流形法的覆盖细化方法,用来解决二维裂纹扩展问题。对某一待细化流形单元,其加密点是预先确定的,并非所有流形单元均需细化,只有满足一定条件的裂纹前缘单元才有必要进行覆盖细化。所有的细化均基于数学覆盖,覆盖细化过程对于裂纹前缘单元的不同边界条件是不同的。在流形单元进行覆盖细化后,将会产生新的数学覆盖以及相应的物理覆盖和单元。同时,节理环路和接触信息也需要做相应的修正。选取三个常见裂纹扩展的算例进行比较分析,计算结果表明,该文的覆盖细化方法是可行的,相对于原始流形单元而言,裂纹尖端可以处于单元内部,覆盖细化方法获得更高的精度,而不显著地增加未知自由度。

References

[1]  Wawrzynek P A, Ingraffea A R. An interactive approach to local remeshing around a propagating crack [J]. Finite Elements in Analysis and Design, 1989, 5(1): 87―96.
[2]  骆少明, 蔡永昌, 张湘伟. 数值流形方法中的网格重分技术及其应用[J]. 重庆大学学报(自然科学版), 2001, 24(4): 34―37, 41.
[3]  Luo Shaoming, Cai Yongchang, Zhang Xiangwei. Study on the numerical nanifold nethod remeshing technique and its application in metal forming processes [J]. Journal of Chongqing University (Natural Science Edition), 2001, 24(4): 34―37, 41. (in Chinese)
[4]  Rashid M M. The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 154(1/2): 133―150.
[5]  R#x000e9;thor#x000e9; J, Gravouil A, Combescure A. A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(42/43/44): 4493―4510.
[6]  金峰, 方修君. 扩展有限元法及与其它数值方法的联系[J]. 工程力学, 2008, 25(增刊1): 1―17.
[7]  Jin Feng, Fang Xiujun. The extended finite element method and its relations with other numerical methods [J]. Engineering Mechanics, 2008, 25(Suppl 1): 1―17. (in Chinese)
[8]  Fries T P, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications [J]. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253―304.
[9]  Ma G W, An X M, He L. The numerical manifold method: A review [J]. International Journal of Computational Methods, 2010, 7(1): 1―32.
[10]  苏海东. 固定网格的数值流形方法研究[J]. 力学学报, 2011, 43(1): 169―178.
[11]  Su Haidong. Study on numerical manifold method with fixed meshes [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 169―178. (in Chinese)
[12]  李录贤, 刘书静, 张慧华, 等. 广义有限元方法研究进展[J]. 应用力学学报, 2009, 26(1): 96―108.
[13]  Li Luxian, Liu Shujing, Zhang Huihua, et al. Researching progress of generalized finite element method [J]. Chinese Journal of Applied Mechanics, 2009, 26(1): 96―108. (in Chinese)
[14]  Stolarska M, Chopp D L, Mo#x000eb;s N, et al. Modelling crack growth by level sets in the extended finite element method [J]. International Journal for Numerical Methods in Engineering, 2001, 51(8): 943―960.
[15]  Mo#x000eb;s N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131―150.
[16]  Cheng K W, Fries T P. Higher-order XFEM for curved strong and weak discontinuities [J]. International Journal for Numerical Methods in Engineering, 2010, 82(5): 564―590.
[17]  Fries T P, Belytschko T. The intrinsic XFEM: A method for arbitrary discontinuities without additional unknowns [J]. International Journal for Numerical Methods in Engineering, 2006, 68(13): 1358―1385.
[18]  方修君, 金峰, 寇立夯, 等. 一种曲折裂纹尖端单元位移场的构造方法[J]. 计算力学学报, 2010, 27(1): 95―101.
[19]  Fang Xiujun, Jin Feng, Kou Lihang, et al. A new method for constructing the approximations of zigzag-crack-tip elements [J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 95―101. (in Chinese)
[20]  Xiao Q Z, Karihaloo B L. Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery [J]. International Journal for Numerical Methods in Engineering, 2006, 66(9): 1378―1410.
[21]  Nakasumi S, Suzuki K, Ohtsubo H. Crack growth analysis using mesh superposition technique and X-FEM [J]. International Journal for Numerical Methods in Engineering, 2008, 75(3): 291―304.
[22]  Karihaloo B L, Xiao Q Z. Modelling of stationary and growing cracks in FE framework without remeshing: A state-of-the-art review [J]. Computers and Structures, 2003, 81(3): 119―129.
[23]  王水林, 葛修润. 流形元方法在模拟裂纹扩展中的应用[J]. 岩石力学与工程学报, 1997, 16(5): 405―410.
[24]  Wang Shuilin, Ge Xiurun. Application of manifold method in simulating crack propagation [J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(5): 405―410. (in Chinese)
[25]  An X M, Ma G W, Cai Y C, et al. Arbitrary discontinuities in the numerical manifold method [J]. International Journal of Computational Methods, 2011, 8(2): 315―347.
[26]  Ning Y J, Yang J, An X M, et al. Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework [J]. Computers and Geotechnics, 2011, 38(1): 40―49.
[27]  Ma G W, An X M, Zhang H H, et al. Modeling complex crack problems using the numerical manifold method [J]. International Journal of Fracture, 2009, 156(1): 21―35.
[28]  苏海东, 崔建华, 谢小玲. 高阶数值流形方法的初应力公式[J]. 计算力学学报, 2010, 27(2): 270―274.
[29]  Su Haidong, Cui Jianhua, Xie Xiaoling. Initial stress equation for high-order numerical manifold method [J]. Chinese Journal of Computational Mechanics, 2010, 27(2): 270―274. (in Chinese)
[30]  蔡永昌, 朱合华, 夏才初. 流形方法覆盖系统自动生成算法[J]. 同济大学学报, 2004, 32(5): 585―590.
[31]  Cai Yongchang, Zhu Hehua, Xia Caichu. Automatically forming of cover system in numerical manifold method [J]. Journal of Tongji University, 2004, 32(5): 585―590. (in Chinese)
[32]  李树忱, 程玉民. 基于单位分解法的无网格数值流形方法[J]. 力学学报, 2004, 36(4): 496―500.
[33]  Li Shuchen, Cheng Yumin. Meshless numerical manifold based on unit partition [J]. Acta Mechanica Sinica, 2004, 36(4): 496―500. (in Chinese)
[34]  李树忱, 李术才, 张京伟, 王兆清. 数值流形方法的数学推导及其应用[J]. 工程力学, 2007, 24(6): 36―42.
[35]  Li Shuchen, Li Shucai, Zhang Jingwei, Wang Zhaoqing. Numerical manifold method from mathematical theory and its application [J]. Engineering Mechanics, 2007, 24(6): 36―42. (in Chinese)
[36]  郭朝旭, 郑宏. 高阶数值流形方法中的线性相关问题研究[J]. 工程力学, 2012, 29(12): 228―232.
[37]  Guo Chaoxu, Zheng Hong. Study on linear dependence problem in high-order numerical manifold method [J]. Engineering Mechanics, 2012, 29(12): 228―232. (in Chinese)
[38]  吕森鹏, 陈卫忠, 贾善坡, 等. 脆性岩石破坏试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2772―2777.
[39]  L#x000fc; Senpeng, Chen Weizhong, Jia Shanpo, et al. Experiential study on brittle rock failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl 1): 2772―2777. (in Chinese)
[40]  Brace W F, Bombolakis E G. A note on brittle crack growth in compression [J]. Journal of Geophysical Research, 1963, 68(12): 3709―3713.
[41]  Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure [J]. Journal of Geophysical Research, 1985, 90(B4): 3105―3125.
[42]  宋娜, 周储伟. 扩展有限元裂尖场精度研究[J]. 计算力学学报, 2009, 26(4): 544―547.
[43]  Song Na, Zhou Chuwei. Accuracy study of crack tip field in extended finite element method [J]. Chinese Journal of Computational Mechanics, 2009, 26(4): 544―547. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133