全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于势函数点分布调整的SIFT图像配准算法

DOI: 10.6046/gtzyyg.2015.03.07, PP. 36-41

Keywords: 尺度不变特征转换(SIFT),势函数,特征点分布,局部互信息

Full-Text   Cite this paper   Add to My Lib

Abstract:

尺度不变特征转换(scaleinvariantfeaturetransform,SIFT)是一种广泛应用于图像配准领域的点特征提取算法。针对基于SIFT的图像自动配准算法存在的特征点分布不均匀问题,提出了一种基于势函数点分布调整的图像配准方法。该方法解决了SIFT算法不能针对特征点的分布情况进行优化的问题。通过调整SIFT的比值阈值,增加配准点的数目;通过引入分子力学中的势函数概念,对特征点分布情况进行优化;通过局部互信息精纠正,微调特征点位置,以提高特征配准点的配准精度;最终实现高质量(空间分布均衡,配准精度高)的图像自动配准。

References

[1]  张云生,邹峥嵘.基于改进ORB算法的遥感图像自动配准方法[J].国土资源遥感,2013,25(3):20-24. Zhang Y S,Zou Z R.Automatic registration method for remote sensing images based on improved ORB algorithm[J].Remote Sensing for Land and Resources,2013,25(3):20-24.doi:10.6046/gtzyyg.2013.03.04.
[2]  王晓华,邓喀中,杨化超.集成互补不变特征的SAR影像自动配准[J].国土资源遥感,2014,26(1):52-56. Wang X H,Deng K Z,Yang H C.Automatic SAR image registration of integrated complementary invariant feature[J].Remote Sensing for Land and Resources,2014,26(1):52-56.doi:10.6046/gtzyyg.2014.01.10.
[3]  吴伟交,王敏,黄心汉,等.基于向量夹角的SIFT特征点匹配算法[J].模式识别与人工智能,2013,26(1):123-127. Wu W J,Wang M,Huang X H,et al.SIFT feature matching algorithm based on vector angle[J].Pattern Recognition and Artificial Intelligence,2013,26(1):123-127.
[4]  张谦,贾永红,胡忠文.多源遥感影像配准中的SIFT特征匹配改进[J].武汉大学学报:信息科学版,2013,38(4):456-459. Zhang Q,Jia Y H,Hu Z W. An improved SIFT algorithm for multi-source remote sensing image registration[J].Geomativs and Information Science of Wuhan University,2013,38(4):456-459.
[5]  Harris C G,Stephens M J.A combined corner and edge etector[C]//Proc Fourth Alvey Vision Conference,Manchester,U K,1988.
[6]  Smith S M,Brady J M.SUSAN-A new approach to low level image processing[J].International Journal of Computer Vision,1997(1):45-78.
[7]  David G L.Object recognition from local scale-invariant features[C]//Proceedings of the International Conference on Computer Vision,Corfu:1999.
[8]  陈爱军,徐光祐,史元春,基于城市航空立体像对的全自动3维建筑物建模[J].测绘学报,2002,31(1):55-57. Chen A J,Xu G Y,Shi Y C.Automated 3D building modeling based on urban aerial stereopair[J].Acta Geodaetica et Cartographic Sinica,2002,31(1):55-57.
[9]  Jonathan H.SPOT digital elvation model(DEM)creation using the Otto and Chau Method[DB/OL].[2004-09]
[10]  Mikolajczyk K,Schmid C.Scale and affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86.
[11]  胡东红,李德华,王祖喜.均匀性度量的势函数模型[J].数学物理学报,2003,23,A(5):607-612. Hu D H,Li D H,Wang Z X.Potential function model of uniformity measurement[J].Acta Mathematiea Scientia,2003,23,A(5):607-612.
[12]  蔡文生,林翼,邵学广.团簇研究中的原子间势函数[J].化学进展,2005,17(4):588-594. Cai W S,Lin Y,Shao X G.Interatomic potential function in cluster research[J].Progress In Chemistry,2005,17(4):588-594.
[13]  张玲,张胜兰,艾君,等.基于势函数的均匀性度量与均匀性布点方法[J].湖北大学学报:自然科学版,2007,29(6):144-146. Zhang L,Zhang S L,Ai J,et al.Uniform measurement and uniform dots distribution based on potential function[J].Journal of Hubei University(Natural Science),2007,29(6):144-146.
[14]  孙彬,严卫东,张彤,等.良分布的多特征遥感图像自动配准算法[J].光电工程,2012,39(8):38-45. Sun B,Yan W D,Zhang T,et al.Remote sensing image automated registration algorithm based on multi-feature and well-distribution[J].Opto-Electronic Engineering,2012,39(8):38-45.
[15]  李伟峰,周金强,方胜辉.基于改进Hausdroff距离的图像配准方法[J].国土资源遥感,2014,26(2):93-98. Li W F,Zhou J Q,Fang S H.Image registration method based on improved Hausdorff distance[J].Remote Sensing for Land and Resources,2014,26(2):93-98.doi:10.6046/gtzyyg.2014.02.16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133