全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稀土氧化物Pr2O3掺杂对高压ZnO压敏电阻性能的影响

, PP. 107-113

Keywords: 掺杂,Pr2O3,ZnO压敏陶瓷,电性能,纳米复合粉体

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用低温固相化学反应法制备了Pr2O3掺杂的ZnO纳米复合粉体,并用此粉体在不同烧结温度下制备了高压ZnO压敏电阻。采用X射线衍射、比表面测试、透射电镜、扫描电镜等手段对制备的ZnO纳米复合粉体及高压ZnO压敏电阻进行了表征,并与未掺杂ZnO压敏电阻进行了对比研究,探讨了稀土氧化物Pr2O3掺杂对高压ZnO压敏电阻电性能的影响机制。结果表明:较低的烧结温度(1030~1130℃)时,掺杂的稀土氧化物Pr2O3偏析于ZnO晶界中,有活化晶界、促使晶粒生长的作用;同时,Pr2O3掺杂导致1080℃烧结的ZnO压敏陶瓷体中晶体相互交织形成晶界织构,比未掺杂的更均匀和致密,这有助于高压ZnO压敏电阻晶界性能的改善,从而提高其综合电性能。当烧结温度为1080℃时,Pr2O3掺杂的高压ZnO压敏电阻的综合电性能最佳:电位梯度为864.39V/mm,非线性系数为28.75,漏电流为35μA。

References

[1]  Aiai G, Agrawal D C. Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics [J]. Mater Sci Eng, 2001, 86: 134-143.
[2]  张丹华, 王 璐, 郭洪波, 等.多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J]. 复合材料学报, 2011, 28(2): 178-184.
[3]  Zhang Danhua, Wang Lu, Guo Hongbo, et al. Thermophysical properties of multiple rare earth oxide co-doped zirconia-based ceramic materials[J].Acta Materiae Compositae Sinica, 2011, 28(2): 178-184.
[4]  徐 东, 程晓农, 赵国平, 等. 新型复合稀土掺杂ZnO-Bi2O3基压敏陶瓷[J]. 北京科技大学学报, 2010, 32(10): 1316-1320.
[5]  Xu Dong, Cheng Xiaonong, Zhao Guoping, et al. Novelmixed rare earths doped ZnO-Bi2O3-based varistor ceramics[J]. Journal of University of Science and Technology Beijing, 2010, 32(10): 1316-1320.
[6]  岳华瑾, 孙清池, 陆翠敏. Pr6O11掺杂锑锰锆钛酸铅压电陶瓷的温度稳定性[J]. 硅酸盐学报, 2006, 34(9): 1050-1054.
[7]  Yue Huajin, Sun Qingchi, Lu Cuimin. Temperature stability of Pr6O11-doped Lead aantimony-manganese zirconate titanate piezoelectric ceramics[J]. J Chinese Ceram Soc, 2006, 34 (9): 1050-1054.
[8]  汪庆卫, 王宏志, 宁 伟, 等. Pr2O3掺杂SnO2陶瓷电极的制备及性能表征[J]. 中国稀土学报, 2010, 28(6): 705-708.
[9]  Wang Qingwei, Wang Hongzhi, Ning Wei, et al. Preparation and characterization of SnO2 electrode doped with Pr2O3 [J]. Journal of Chinese Rare Earth Society, 2010, 28(6): 705-708.
[10]  李世普. 特种陶瓷工艺学[M].武汉: 武汉工业大学出版社, 1990: 271.
[11]  Li Shipu. Special ceramic technology [M]. Wuhan: Wuhan Industrial University Press, 1990: 271.
[12]  殷 声.现代陶瓷及其应用[M].北京:北京科技出版社, 1990: 97.
[13]  Yin Sheng. Modern ceramics and their applications [M]. Beijing: Beijing Science and Technology Press, 1990: 97.
[14]  Chun S Y, Shinozaki K, Mizutani N. Formation of varistor characteristics by the grain-boundary penetration of ZnO-PrOx liquid into ZnO ceramics[J]. Journal of the American Ceramic Society, 1999, 82(11): 3065-3073.
[15]  El-Meliegy E M, Saleh H I, Selim M. Sintering and characterization of bismuth-oxide-containing zinc oxide varistors[J]. Materials Characterization, 2004, 52(5): 371-378.
[16]  Magnusson K O, Wiklund S. Interface formation of Bi on ceramic ZnO: A simple model varistor grain boundary [J]. Journal of Applied Physics, 1994, 76(11): 7405-7409.
[17]  何金良, 胡 军, 孟博文, 等.特高压GIS避雷器对压敏电阻电压梯度的要求 [J]. 中国科学: E辑——技术科学, 2009, 39(4): 735-739.
[18]  He Jinliang, Hu Jun, Meng Bowen, et al. the Requirements of varistor voltage gradient for UHV GIS arrester [J]. Science in China Series: E-Technological Sciences, 2009, 39(4): 735 -739.
[19]  Shirai Y, Miyato Y, Taguchi M, et al. Over-voltage suppression in a fault current limiter by a ZnO varistor [J]. IEEE Trans Applied Superconductivity, 2003, 13(2): 2064-2070.
[20]  Imai T, Udagawa T, Ando H, et al. Development of high gradient zinc-oxide nonlinear resistors and their application to surge arresters[J]. IEEE Trans Power Del, 1998, 13(4):1182-1187.
[21]  Hingorani S, Pillai V, Kumar P, et al. Microemulsion medicated synthesis of zinc-oxide nanoparicles for varistor studies [J]. J Mat Res Bull, 1993, 28: 1303-1310.
[22]  郭红丽, 卫英慧, 候利锋, 等. 纳米氧化锌压敏陶瓷[J]. 太原理工大学学报, 2005, 36(2): 115-118.
[23]  Guo Hongli, Wei Yinghui, Hou Lifeng, et al. Fabrication of nanometer ZnO varistors [J]. Journal of Taiyuan University of Technology, 2005, 36(2): 115-118.
[24]  高宏玲, 吕树臣. 纳米氧化锌压敏电阻的制备及性能研究[J]. 哈尔滨师范大学自然科学学报, 2005, 21(1): 31-34.
[25]  Gao Hongling, Lü Shuchen. Preparation and properties of nanocrystalline ZnO-based varistor[J]. Nature Sciences Journal of Harbin Normal University, 2005, 21(1): 31-34.
[26]  刘桂香, 徐光亮, 罗庆平. 室温固相合成掺杂ZnO纳米粉体制备ZnO压敏电阻[J]. 精细化工, 2006, 23(9): 841-844.
[27]  Liu Guixiang, Xu Guangliang, Luo Qingping. Preparation of doped ZnO nano-powders and ZnO varistors by solid-reaction at room temperature [J]. Fine Chemicals, 2006, 23(9): 841-844.
[28]  王风贺, 雷 武, 夏明珠, 等. 掺杂La2O3的ZnO-Pr6O11系压敏陶瓷材料[J]. 电子元件与材料, 2002, 21(12): 22-26.
[29]  Wang Fenghe, Lei Wu, Xia Mingzhu, et al. Study on the varistor ceramics of ZnO-Pr6O11 system doped with La2O3[J].Electronic Components & Materials, 2002, 21(12): 22-26.
[30]  Yan Q, Chen J Z, Tu M J. Influence of Nd2O3 on voltage and microstructure of ZnO varistor materials[J].Rare Metal Meterials and Engineering, 2005, 34(1): 154-157.
[31]  Nahm C W, Shin B C, Park J A, et al. Effect of CoO on nonlinear electrical properties of praseodymia-based ZnO varistors [J]. Mater Lett, 2006, 60(2): 164-167.
[32]  柯 磊, 蒋冬梅, 王春霞, 等.高电位梯度ZnO压敏电阻的高压稳压性能研究 [J].功能材料, 2008, 12(39): 2082-2084.
[33]  Ke Lei, Jiang Dongmei, Wang Chunxia, et al. The voltage stabilization of high voltage gradient ZnO varistors [J]. Journal of Functional Materials, 2008, 12(39): 2082-2084.
[34]  马争争, 李建青, 陈子鹏, 等.高温高压下Co掺杂ZnO的压敏特性 [J].武汉理工大学学报, 2010, 32(8): 42-44.
[35]  Ma Zhengzheng, Li Jianqing, Chen Zipeng, et al. Effect of high pressure and temperature treatment on varistor properties of Zn1-x CoxO [J]. Journal of Wuhan University of Technology, 2010, 32(8): 42-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133