全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

计算复合材料有效弹性模量的重心有限元方法

, PP. 173-179

Keywords: 重心有限元,有效模量,复合材料,数值模拟,多边形单元

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用几何法构造出任意边数多边形单元的重心插值形函数,应用Galerkin法提出了求解弹性力学问题的重心有限元方法。用重心有限元方法对SiC/Ti和B/Al2种纤维复合材料横向截面的有效弹性模量进行了预报。计算模型取纤维呈六边形排列且为各向同性的代表性单胞,对其杨氏模量、剪切模量和体积模量在较大的体积分数范围内进行了数值模拟。通过与解析公式和传统有限元的计算结果对比,重心有限元方法的计算结果符合解析公式解的趋势,与传统有限元的计算结果吻合较好。与传统有限元方法相比,重心有限元方法的单元划分不受三角形或四边形的形状限制,能够再现材料的真实结构。由于单元较大且数目较少,本文方法具有很高的计算效率。

References

[1]  邹 波, 卢子兴. 基于五相球模型确定含涂层空心微球复合材料的有效模量 [J]. 复合材料学报, 2006, 23(5): 137 -142. Zou Bo, Lu Zixing. Determination of the effective moduli of composite reinforced by hollow coating spheres based on the five phase spherical model [J]. Acta Materiae Compositae Sinica, 2006, 23(5): 137 -142.
[2]  苏继龙, 庄哲峰. γ-TiAl基合金有效弹性性能的微结构尺度效应 [J]. 复合材料学报, 2006, 23(5): 126 -131. Su Jilong, Zhuang Zhefeng. Micromechanical studies on effective moduli and microstructural size effect for γ-TiAl-based alloys based on micropolar theory [J]. Acta Materiae Compo-sitae Sinica, 2006, 23(5): 126 -131.
[3]  童金章, 关凌云, 南策文, 等. 有限变形下含非完美界面复合材料有效模量的界限 [J]. 复合材料学报, 1999, 16(2): 140 -146. Tong Jinzhang, Guan Lingyun, Nan Cewen, et al. Upper and lower bounds of effective moduli for elastic composites with imperfect interface at finite strains [J]. Acta Materiae Compositae Sinica, 1999, 16(2): 140 -146.
[4]  孟庆元, 杜善义. 随机双向介质宏观弹性模量的边界元法预报 [J]. 复合材料学报, 1990, 7(1): 45 -50. Meng Qingyuan, Du Shanyi. The prediction of macroscopic elastic modulus of random biphase medium by the BEM method [J]. Acta Materiae Compositae Sinica, 1990, 7(1): 45 -50.
[5]  Eischen J W, Torquato S. Determining elastic behavior of composites by the boundary element method [J]. J Appl Phys, 1993, 74(1): 159 -170.
[6]  王人杰. 纤维增强复合材料横向弹性常数 [J]. 复合材料学报, 1996, 13(2): 98 -104. Wang Renjie. Transverse elastic constants for fiber reinforced composite materials [J]. Acta Materiae Compositae Sinica, 1996, 13(2): 98 -104.
[7]  方岱宁, 齐 航. 颗粒增强复合材料有效性能的三维数值分析 [J]. 力学学报, 1996, 28(4): 475 -482. Fang Daining, Qi Hang. Numerical study of effective properties of particulate reinforced composite materials [J]. Acta Mechanica Sinica, 1996, 28(4): 475 -482.
[8]  雷友锋, 魏德明, 高德平. 细观力学有限元法预测复合材料宏观有效弹性模量 [J]. 燃气涡轮试验与研究, 2003, 16(3): 11 -18. Lei Youfeng, Wei Deming, Gao Deping. Predicting macroscopic effective elastic moduli of composites by micro-mechanics FEM [J]. Gas Turbine Experiment and Research, 2003, 16(3): 11 -18.
[9]  Wacker G, Bledzki A K, Chateb A. Effect of interphase on the transverse Youngs modulus of glass/epoxy composites [J]. Composites Part A, 1998, 29A: 619 -626.
[10]  Chen X L, Liu Y J. Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites [J]. Computational Materials Science, 2004, 29: 1 -11.
[11]  Yang Q, Tang L, Chen H. Self-consistent finite element method: A new method for predicting effective properties of inclusion media [J]. Finite Element in Analysis and Design, 1994, 17: 247 -257.
[12]  区焕文, 徐稳林, 冼定国. 等效介质理论用于单向纤维增强复合材料弹性性能的数值计算 [J]. 复合材料学报, 1994, 11(3): 50 -55. Au W M, Tsui W L, Shin F G. Numerical calculations of elastic properties of unidirectional fibre reinforced composites based on effective medium theory [J]. Acta Materiae Compositae Sinica, 1994, 11(3): 50 -55.
[13]  Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions [J]. Finite Elements in Analysis and Design, 1995, 19: 45 -55.
[14]  Ghosh S, Mallett R L. Voronoi cell finite elements [J]. Computers & Structures, 1994, 50(1): 33 -46.
[15]  Moorthy S, Ghosh S. Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 185(1): 37 -74.
[16]  Sze K Y, Sheng N. Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics [J]. Finite Elements in Analysis and Design, 2005, 42: 107 -129.
[17]  Vena P, Gastaldi D. A Voronoi cell finite element model for the indentation of graded ceramic composites [J]. Composites Part B, 2005, 36: 115 -126.
[18]  Wachspress E L. A rational finite element basis [M]. New York: Academic Press, Inc., 1975: 24 -49.
[19]  Meyer M, Lee H, Barr A, et al. Generalized barycentric coordinates on irregular polygons [J]. Journal of Graphics Tools, 2002, 7(1): 13 -22.
[20]  Dasgupta G. Interpolants within convex polygon: Wachspress shape functions [J]. Journal of Aerospace Engineering, 2003, 16(1): 1 -8.
[21]  Malsch E A, Dasgupta G. Interpolations for temperature distributions: A method for all non-concave polygons [J]. International Journal of Solid and Structures, 2004, 41(8): 2165 -2188.
[22]  王兆清, 冯 伟. 高度不规则网格多边形单元的有理函数插值格式 [J]. 固体力学学报, 2005, 26(2): 199 -202. Wang Zhaoqing, Feng Wei. Rational function interpolation scheme of polygonal elements based on highly irregular grids [J]. Acta Mechanica Solida Sinica, 2005, 26(2): 199 -202.
[23]  王兆清, 冯 伟. 求解弹性力学问题的有理单元法 [J]. 计算力学学报, 2006, 23(5): 611 -616. Wang Zhaoqing, Feng Wei. Rational element method for solving elastic problems [J]. Chinese Journal of Computational Mechanics, 2006, 23(5): 611 -616.
[24]  Sukumar S, Tabarraei A. Conforming polygonal finite elements [J]. International Journal for Numerical Methods in Engineering, 2004, 61: 2045 -2066.
[25]  Floater M S. Mean value coordinates [J]. Computer Aided Geometric Design, 2003, 20(1): 19 -27.
[26]  王兆清. 多边形有限元研究进展 [J]. 力学进展, 2006, 36(3): 344 -353. Wang Zhaoqing. Advances in polygonal finite element method [J]. Advances in Mechanics, 2006, 36(3): 344 -353.
[27]  杨庆生. 复合材料细观结构力学与设计 [M]. 北京: 中国铁道出版社, 2000: 55 -56. Yang Qingsheng. Mechanics and design of composite micro-structure [M]. Beijing: China Railway Press, 2000: 55 -56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133