全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地理科学  2013 

基于复杂网络聚类的最优选址模型

, PP. 143-149

Keywords: 选址,网络聚类,复杂网络,最短路径,Dijkstra算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

最优选址在社会经济活动中非常重要。传统的网络聚类分析以空间两点之间的直线度量距离,而不是以空间最短网络路径作为聚类条件,无法找到复杂网络的最优选址中心。基于最短路径的复杂网络聚类模型,探索复杂道路网络中的最优选址。模型通过迭代法获取近似最优解,二分邻域分割法逼近最优解分布区,应用邻域下降法达到最优选址点。实验结果表明本模型与穷举-Dijkstra算法相比,计算精度相当,计算速度提高了约23倍以上。模型以复杂网络聚类为基础推导,为复杂网络选址、聚类提供了一种新的理论与方法。

References

[1]  Wu X, Kumar V, Quinlan J R, et al.. Top 10 algorithms in data mining[J]. Knowl Inf Syst, 2008, 14:1-37.
[2]  Murtagh F. A survey of recent advances in hierarchical clustering algorithms which use cluster centers[J]. Comput J,1984, 26: 354-359.
[3]  Lloyd S P. Least squares quantization in pcm[J]. IEEE T Inform Theory, 1982, 28(2):129-137.
[4]  Lloyd S P. Least squares quantization in pcm[C]. Bell Telephone Laboratories Paper, 1957.
[5]  Gray R M, Neuhoff D L. Quantization[J]. IEEE T Inform Theory, 1998, 44(6):2325-2384.
[6]  Ball G H, Hall D J. Isodata, a novel method of data analysis and classification[M]. Technical report republished by Stanford University, Stanford, CA, 1965.
[7]  Ruspini E H. A new approach to clustering[J]. Inf Control, 1969, 15:22-32.
[8]  Zadeh L A. Fuzzy sets[J]. Inf Control, 1965, 8:338-353.
[9]  Bezdek J C, Chuah S, Leep D. Generalized k-nearest neighbor rules[J]. Fuzzy Set Syst, 1986, 18(3):237-256.
[10]  Zahn C T. Graph-theoretical methods for detecting and describing gestalt clusters[J]. IEEE T Comput C, 1971, 20:68-86.
[11]  Guimera R, Sales-Pardo M, Amaral L A N. Modularity from fluctuations in random graphs and complex networks[J]. Phys Rev E, 2004, 70:025101.
[12]  Pujol J M, Bejar J, Delgado J. Clustering algorithm for determining community structure in large networks[J]. Phys Rev E, 2006, 74:016107.
[13]  Palla G, Derenyi I, Farkas I, et al.. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435:814-818.
[14]  Guimera R, Amaral L A N. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433:895-900.
[15]  Newman M E J. Fast algorithm for detecting community structure in networks[J]. Phys Rev E, 2004, 69(6):066133.
[16]  Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Phys Rev E, 2004, 69:026113.
[17]  Duch J, Arenas A. Community detection in complex networks using extremal optimization[J]. Phys Rev E, 2005, 72:027104.
[18]  Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering[J]. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 1992,1992, 11: 1074-1085.
[19]  Jain A K, Murty M N, and Flynn P J. Data clustering: A review[J]. Acm Comput Surv, 1999, 31:264-323.
[20]  King B. Step-wise clustering procedures[J]. J Am Stat Assoc, 1967, 69:86-101.
[21]  Hart P. The condensed nearest neighbor rule[J]. IEEE T Inform Theory, 1968, 14:515-516.
[22]  Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. J R Stat Soc B, 1977, 39:1-38.
[23]  Jain A K. Algorithms for clustering data[M]. Prentice-Hall advanced reference series Prentice-Hall, Inc, Upper Saddle River, NJ, 1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133