全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地理科学  2011 

氮可利用性对东北不同类型湿地土壤有机碳矿化的影响

, PP. 1480-1486

Keywords: 泥炭土,草甸沼泽土,氮可利用性,有机碳矿化,微生物量碳氮

Full-Text   Cite this paper   Add to My Lib

Abstract:

2010年6~10月,在中国东北连续多年冻土区,岛状多年冻土区和季节性冻土区采集典型湿地土壤,通过室内分析和模拟试验研究了不同冻土区湿地土壤有机碳矿化及其微生物活性对不同氮可利用性的响应特征。试验设置4个氮处理水平,分别为0mg/g(N0),0.1mg/g(N1),0.2mg/g(N2),0.5mg/g(N3)。结果表明,培养结束后3种土壤在N0处理下的有机碳累计矿化量分别为5646mg/kg,2103mg/kg和1287mg/kg,与初始土壤有机碳含量、全氮含量和微生物量碳(MBC)呈显著正相关。3种土壤在氮输入后的有机碳矿化速率和累积矿化量都明显低于N0处理,表明氮输入对有机碳矿化产生抑制作用。随着氮输入量的增大,氮输入对不同土壤有机碳矿化的抑制作用有所差异,表现为不同氮输入对连续多年冻土区土壤累积矿化量影响无显著差异;岛状多年冻土区土壤在N1和N2处理下的有机碳累积矿化量明显高于N3处理;季节性冻土区土壤在N2和N3处理下的累积矿化量明显低于N1处理。培养结束后,3种土壤微生物量氮(MBN)含量随氮输入量增加而降低,MBC/MBN随氮输入量增加而增加;季节性冻土区草甸沼泽土培养结束后的MBN和MBC/MBN都与累积矿化量存在显著相关关系,表明季节性冻土区草甸沼泽土氮可利用性增加可能改变了微生物的组成或结构,进而对有机碳矿化产生影响。

References

[1]  Intergovernmental Panel on Climate Change WGI.Fourth As-sessment Report,Climate Change 2007:The Physical Science Basic[C].Cambrige:Cambridge University Press,2007.
[2]  Gorham E.Northern peatlands:role in the carbon cycle and probable responses to climate warming[J].Ecological Applica-tions,1991,1:182-195.
[3]  刘德燕,宋长春,王丽,等.外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响[J].环境科学,2008,29(12):3525~ 3530.
[4]  Neff J C,Townsend A R,Gleixner G,et al.Variable effects of nitrogen additions on the stability and turnover of soil carbon[J].Nature,2002,419:915-917.
[5]  Hartley I P,Hopkins D W,Sommerkorn M,et al.The response of organic matter mineralization to nutrient and substrate addi-tions in sub-arctic soils[J].Soil Biology and Biochemistry. 2010,42:92-100.
[6]  金会军,王绍令,吕兰芝,等.兴安岭多年冻土退化特征[J].地理科学,2009,29(2):223~228.
[7]  Mack M C,Schuur E A G,Bret-Harte M S et al.Ecosystem car-bon storage in arctic tundra reduced by long-term nutrient fertil-ization[J].Nature,2004,431:440-443.
[8]  刘德燕,宋长春.磷输入对湿地土壤有机碳矿化及可溶性碳组分的影响[J].中国环境科学,2008,28(9):769~774.
[9]  ?gren G,Bosatta E,Magill A H.Combining theory and experi-ment to understand effects of inorganic nitrogen on litter de-composition[J].Oecologia,2001,128:94-98.
[10]  Weand M P,Arthur M A,Lovett G M,et al.Effects of tree spe-cies and N additions on forest floor microbial communities and extracellular enzyme activities[J].Soil Biology and Biogeo-chemistry,2010,42:2161-2173.
[11]  Bradley K,Drijber R A,Knops J.Increased N availability in grassland soils modifies their microbial communities and de-creases the abundance of arbuscular mycorrhizal fungi[J].Soil Biology and Biogeochemistry,2006,38:1583-1595.
[12]  Hobbie S E,Vitousek P M.Nutrient limitation of decomposi-tion in Hawaiian forests[J].Ecology,2000,81:1867-1877.
[13]  Weintraub M N,Schimel J P.Nitrogen mineralization and soil organic matter chemistry in Arctic tundra soil[J].Ecosystem, 2003,6:129-143.
[14]  Aerts R,Van Logtestijn R S P,Karlsson P S.Nitrogen supply differentially affects litter decomposition rates[J].Oecologia, 2006,146:652-658.
[15]  Houghton J T,Ding Y,Griggs D J,et al.Climate change 2001: the scientific basis third IPCC report[C].Cambrige:Cam-bridge University Press,2001.
[16]  Mack M C,Schuur E A G,Bret-Harte M S,et al.Ecosystem car-bon storage in arctic tundra reduced by long-term nutrient fertil-ization[J].Nature,2004,431:440-443.
[17]  Allison S D,LeBauer D S,Ofrecie M R,et al.Low levels of ni-trogen addition stimulate decomposition by boreal forest fungi[J].Soil Biology and Biochemistry,2009,41:293-302.
[18]  Aerts R,Logtestijn R V,Staalduinen M V,et al.Nitrogen supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation[J].Oeco-logia,1995,104:447-453.
[19]  刘兴土.东北湿地[M].北京:科学出版社,2005.
[20]  秦大河,陈宜瑜,李学勇.中国气候与环境演变(下卷):气候与环境变化的影响与适应,减缓对策[M].北京:科学出版社.
[21]  Hobbie S E,Nadelhoffer K J,H?gberg P.A synthesis:the role of nutrients as constrains on carbon balances in boreal and arc-tic regions[J].Plant and Soil,2002,242:163-170.
[22]  Allison S D,Czimczik C L,Treseder K K.Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J].Global Change Biology,2008,14:1156-1168.
[23]  Mikan J C,Schimel J P,Doyle A P.Temperature controls of mi-crobial respiration in arctic tundra soils above and below freez-ing[J].Soil Biology and Biochemistry,2002,34,1785-1795.
[24]  Wang X W,Li X Z,Hu Y M,et al.Potential carbon mineraliza-tion of permafrost peatlands in Great Hing’an Mountains,Chi-na[J].Wetlands,2010,30:747-756.
[25]  鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:156~157,159~162.
[26]  Davidson E A,Janssens I A.Temperature sensitivity of soil car-bon decomposition and feedbacks to climate change[J].Na-ture,2006,440:165-173.
[27]  Hopkins D W,Sparrow A D,Elberling B,et al.Carbon,nitro-gen and temperature controls on microbial activity in soils from an Antarctic dry valley[J].Soil Biology and Biochemistry, 2006,38:3130-3140.
[28]  陈涛,郝晓晖,杜丽君,等.长期施肥对水稻土土壤有机碳矿化的影响[J].应用生态学报,2008,19(7):1494~1500.
[29]  Craine J M,Morrow C,Fierer N.Microbial nitrogen limitation increases decomposition[J].Ecology,2007,88(8):2105-2113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133