全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一个大规模垃圾短信实时过滤系统

DOI: 10.13190/jbupt.200803.33.283, PP. 33-37

Keywords: 垃圾短信过滤,统计学习,文本分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析现有短信监控系统不足的基础上,结合文本分类技术和行为识别技术,设计了一种垃圾短信监控和过滤系统.系统综合考虑短信发送行为特征、短信文本内容等特点,并采用实时分类和离线分类相结合的方法进行高效短信过滤.此外,还设计了一组基于反馈的自学习机制,使分类器具备增量式学习能力.与传统方法相比,本文方法在过滤效率和准确率两方面均获得大幅度提升.

References

[1]  Muquet B, M de Courville, Duhamel P. Subspace-based blind and semi-blind channel estimation for OFDM systems[J]. IEEE Trans Signal Process, 2002, 50(7): 1699-1712.
[2]  Li C, Roy S. Subspace-based blind channel estimation for OFDM by exploiting virtual carriers[J]. IEEE Trans Wireless Commun, 2003, 2(1): 141-150.
[3]  Shin Chongyong. Blind channel identification for MIMO-OFDM systems. IEEE Trans Vehicular Technology, 2007, 56(10): 670-683.
[4]  Christina Fragouli, Naofal Al-Dhahir, William Turin. Training-based channel estimation for multiple-antenna broadband transmissions[J]. IEEE Trans Wireless Commun, 2003, 2(2): 384-391.
[5]  李小军,尹长川,乐光新. 双衰信道下MIMO-OFDM系统的最优频域导频设计方案[J]. 北京邮电大学学报, 2006, 29(3): 53-56. Li Xiaojun, Yin Changchuan, Yue Guangxin. Optimum pilot tone design for MIMO-OFDM systems over doubly-selective channels[J]. Journal of Beijing University of Posts and Telecommunications, 2006, 29(3): 53-56.
[6]  Peter Strobach. Low-rank adaptive filters[J]. IEEE Trans Signal Processing, 1996, 44(3): 2932-2947.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133