全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

解决ACP高维优化问题的自适应多粒子模拟退火算法

DOI: 10.13190/j.jbupt.2015.01.018, PP. 92-96

Keywords: 模拟退火,高维优化,自适应多粒子,,小区自动规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种改进的针对高维优化问题的自适应多粒子模拟退火(AMSA)算法,通过多个粒子对整个高维空间进行随机分割和相对独立的局部退火.当每个局部于当前温度下达到稳态后,随着温度的降低,粒子依据自身状态和相互之间的关系自适应地减少粒子数目,以降低复杂度.该算法用于解决通用移动通信系统自动小区规划问题.仿真结果显示,对比其他用于解决高维优化问题的启发式算法,AMSA算法能在预定的时间内取得更理想的结果.

References

[1]  王忠贵, 罗亚中. 高维复杂函数的混合模拟退火全局优化策略[J]. 计算机工程与应用, 2004, 40(23): 36-39 Wang Zhonggui, LuoYazhong. SA-based hybrid global optimization approach for complex functions with high-dimension[J]. Computer Engineering and Application, 2004, 40(23): 36-39.
[2]  Bandyopadhyays S, Saha S, Maulik U, et al. A simulated annealing based multi-objective optimization algorithm: AMOSA [J]. IEEE Transactions on Evolution, 2008, 7(22): 269-283.
[3]  Soliman O S, Mohamed S M, Ramadan E A. A bio-inspired memetic particle swarm optimization algorithm for multi-objective optimization problems[C]//Innovations in Bio-Inspired Computing and Applications (IBICA), 2012 Third International Conference on. HangZhou: IEEE, 2012: 127-132.
[4]  Chuai Gang, Zhao Dan, Sun Li. Novel adaptive simulated annealing algorithm for constrained multi-objective optimization[J]. China Communication, 2012, 11(9): 68-78.
[5]  Gong Maoguo, Jiao Licheng, Ma Wenping. Large-scale optimization using immune algorithm[C]//Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation. New York: ACM, 2009: 149-156.
[6]  Jin Jianyong, Crainic T G, Lkketangen A. A parallel multi-neighborhood cooperative tabu search for capacitated vehicle routing problems[J]. European Journal of Operational Research, 2012, 222(3): 441-451.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133