2 Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction--Experimental results and theoreticalinterpretation. Science, 1980, 208: 1095-1108??
[2]
3 McElwain J, Willis K J, Lupia R. Cretaceous CO2 decline and the radiation and diversification of angiosperms. In: Ehleringer J R, Cerling T E, Dearing M D, eds. A History of Atmospheric CO2 and its Effects on Plants, Animals, and Ecosystems. Berlin: Springer-Verlag, 2005.133-165
[3]
4 Davies A, Kemp A E S, Pike J. Late Cretaceous seasonal ocean variability from the Arctic. Nature, 2009, 460: 254-258??
[4]
21 Pillitteri L J, Sloan D B, Bogenschutz N L, et al. Termination of asymmetric cell division and differentiation of stomata. Nature, 2007, 445:501-505??
[5]
22 Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827??
[6]
23 Woodward F I. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 1987, 327: 617-618??
[7]
24 Royer D L, Wing S, Beerling D J, et al. Paleobotanical evidence for near present day levels of atmospheric CO2 during part of the Tertiary.Science, 2001, 292: 2310-2313??
[8]
1 Wang C S, Hu X M, Sarti M, et al. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep-seaenvironments. Cretaceous Res, 2005, 26: 21-32??
[9]
5 Royer D L, Berner R A, Park J. Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature, 2007, 446:530-532??
[10]
6 Heimhofer U, Hochuli P A, Burla S, et al. Timing of Early Cretaceous angiosperm diversification and possible links to majorpaleoenvironmental change. Geology, 2005, 33: 141-144??
[11]
7 Berner R A. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Am J Sci, 1994, 294: 56-91??
[12]
8 Berner R A, Kothavala Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am J Sci, 2001, 301: 182-204??
[13]
9 Ekart D D, Cerling T E, Montanez I P, et al. A 400 million year carbon isotope record of pedogenic carbonate: Implications forpaleoatomospheric carbon dioxide. Am J Sci, 1999, 299: 805-827??
[14]
10 Tajika E. Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. Isl Arc, 1999, 8:293-303??
[15]
11 Beerling D J, Lomax B H, Royer D L, et al. An atmospheric PCO2 reconstruction across the Cretaceous-Tertiary boundary from leafmegafossils. Proc Nat Acad Sci USA, 2002, 99: 7836-7840??
[16]
12 Haworth M, Hesselbo S P, McElwain J C, et al. Mid-Cretaceous PCO2 based on stomata of the extinct conifer Pseudofrenelopsis(Cheirolepidiaceae). Geology, 2005, 33: 749-752??
[17]
13 Passalia M G. Cretaceous PCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina. PalaeogeogrPalaeoclimatol Palaeoecol, 2009, 273: 17-24??
[18]
14 Quan C, Sun C, Sun Y, et al. High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgocuticles. Cretaceous Res, 2009, 30: 424-428??
[19]
15 Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 2001, 411: 287-290??
[20]
16 Sun B N, Xiao L, Xie S P, et al. Quantitative analysis of paleoatmospheric CO2 level based on stomatal characters of fossil Ginkgo fromJurassic to Cretaceous in China. Acta Geol Sin-Engl Ed, 2007, 81: 931-939??
[21]
17 Kürschner W M. Leaf sensor for CO2 in deep time. Nature, 2001, 411: 247-248??
[22]
18 Beerling D J, Royer D L. Fossil plants indicators of the Phanerozoic global carbon cycle. Annu Rev Earth Planet Sci, 2002, 30: 527-556??
[23]
19 Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901-907??
[24]
20 Goodwin S M, Jenks M A. Plant cuticle function as a barrier to water loss. In: Matthew A, Jenks P M H, eds. Plant Abiotic Stress. Oxford:Blackwell Publishing, 2007. 14-36
[25]
25 Royer D L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynol, 2001, 114:1-28??
27 Xie S, Sun B, Yan D, et al. Altitudinal variation in Ginkgo leaf characters: Clues to paleoelevation reconstruction. Sci China Ser D-EarthSci, 2009, 52: 2040-2046??
[28]
28 黑龙江省地质矿产局. 黑龙江区域地质志. 北京: 地质出版社, 1993. 1-736
[29]
29 Sun G, Akhmetiev M, Golovneva L, et al. Late Cretaceous plants from Jiayin along Heilongjiang River, Northeast China. Forsch Inst Senck,2007, 258: 75-83
[30]
30 Quan C, Sun G. Late Cretaceous aquatic angiosperms from Jiayin of Heilongjiang, Northeast China. Acta Geol Sin-Engl Ed, 2008, 82:1133-1140
[31]
31 Royer D L. Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices. In: Wing S L, Gingerich P D, Schmitz B, et al.eds. Causes and Consequences of Globally Warm Climates in the Early Paleogene. Boulder: The Geological Society of America, 2003.79-93
[32]
32 Tralau H. Evolutionary trends in the genus Ginkgo. Lethaia, 1968, 1: 63-101??
[33]
33 Royer D L, Hickey L J, Wing S L. Ecological conservatism in the “living fossil” Ginkgo. Paleobiology, 2003, 29: 84-104??
[34]
34 Quan C, Sun G, Zhou Z. A new Tertiary Ginkgo (Ginkgoaceae) from the Wuyun Formation of Jiayin, Heilongjiang, northeastern China andits paleoenvironmental implications. Am J Bot, 2010, 97: 446-457??
[35]
35 McElwain J C. Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Philos T R Soc B, 1998, 353: 83-96
[36]
36 Kothavala Z, Oglesby R J, Saltzman B. Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2.Geophys Res Lett, 1999, 26: 209-212??
38 Fletcher B J, Beerling D J, Brentnall S J, et al. Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and aCretaceous case study. Global Biogeochem Cycles, 2005, 19: 1-13
[39]
39 Wallmann K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. GeochimCosmochim Acta, 2001, 65: 3005-3025
[40]
40 Nordt L, Atchley S, Dworkin S I. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiaryboundary. Geology, 2002, 30: 703-706??
[41]
41 Forster A, Schouten S, Baas M, et al. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean.Geology, 2007, 35: 919-922??
[42]
42 Arthur M A, Dean W E, Schlanger S O. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, andchanges in atmospheric CO2. Geophys Monogr, 1985, 32: 504-529
[43]
43 Chen L Q, Li C S, Chaloner W G, et al. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signalatmospheric CO2 change. Am J Bot, 2001, 88: 1309-1315??
[44]
44 Berner R A. The rise of plants and their effect on weathering and atmospheric CO2. Science, 1997, 276: 544-546??
[45]
45 Hegerl G C, Crowley T J, Hyde W T, et al. Climate sensitivity constrained by temperature reconstructions over the past seven centuries.Nature, 2006, 440: 1029-1032??
[46]
46 Royer D L. CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta, 2006, 70: 5665-5675??
[47]
47 Li X, Jenkyns H C, Wang C, et al. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies fromsouthern Tibet, China. J Geol Soc, 2006, 163: 375-382??