全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地球辐射带动态变化和辐射带粒子快速加速

, PP. 951-975

Keywords: 辐射带,“杀手电子”,CME磁暴,CIR磁暴,波粒相互作用,ULF波,VLF波

Full-Text   Cite this paper   Add to My Lib

Abstract:

?通过SAMPEX卫星的观测,定量地研究了在CME和CIR磁暴期间1.5~6.0MeV“杀手”电子的通量分布的变化.发现外辐射带的内、外边界都可以被随着L壳指数衰减的函数很好地拟合出来.另外,本文根据这一指数衰减函数和由此得到的动态的外辐射带内、外边界改进了RBC指数的计算,并由此得到CME磁暴有可能比CIR磁暴产生更多的相对论电子.辐射带物理模型STEERB基于三维的Fokker-Planck方程实现,包含局地波粒相互作用、径向扩散和绝热输运等物理过程.由于数值格式的限制,以往的辐射带模型均没有引入局地波粒相互作用相关的交叉扩散项.STEERB模型的对比实验显示,交叉扩散项的忽略能够导致电子通量被高估5倍甚至几个数量级.这个结果说明,交叉扩散项对于辐射带电子通量的准确评估具有重要意义.以往的辐射带物理模型常常采用固定的偶极磁场,忽略了背景磁场变化引起的绝热过程.STEERB模型则采用了时变的背景磁场,同时引入绝热和非绝热过程.对比实验结果显示,绝热输运过程能够显著地影响辐射带电子通量的演化.行星际激波与磁层的相互作用能够在内磁层激发的ULF波;激发的极性模的ULF波会造成“杀手”电子的快速加速过程.极向模和环向模ULF波对漂移-共振加速的作用在不同L值区域有所不同.环向模ULF波对能量电子的加速在L值较大的区域(外磁层)较为重要,而在L值较小的区域(内磁层),极向模ULF波则对能量电子的加速起主要作用.

References

[1]  20 Abel B, Thorne R M. Electron scattering loss in Earth’s inner magnetosphere 2: Sensitivity to model parameters. J Geophys Res, 1998,103: 2397-2408
[2]  21 Summers D, Thorne R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res, 2003, 108(A4), doi: 10.1029/2002JA009489
[3]  22 Meredith N P, Horne R B, Thorne R M, et al. Favored regions for chorus-driven electron acceleration to relativistic energies in the Earths outer radiation belt. Geophys Res Lett, 2003, 30: 1871
[4]  23 Horne R B, Thorne R M, Glauert S A, et al. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225
[5]  24 何兆国, 肖伏良, 宗秋刚, 等. 多卫星联合观测磁暴时合声波驱动的外辐射带高能电子通量的增强. 中国科学: 技术科学, 2011, 41: 1106-1114
[6]  25 Zong Q G, Zhou X Z, Li X, et al. Ultra low frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105
[7]  26 Yang B, Zong Q G, Wang Y F, et al. Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. J Geophys Res, 2010, 115: A02214
[8]  27 Li L, Cao J B, Zhou G C. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005, 110(A3): A03203
[9]  28 Blake J B, Kolasinski W A, Fillius R W, et al. Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1993. Geophys Res Lett, 1992, 19: 821-824
[10]  29 Claudepierre S G, Elkington S R, Wiltberger M. Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. J Geophys Res, 2008, 113: A05218
[11]  30 田安民, 宗秋刚, 史全歧. 晨侧等离子体片ULF Pc5压缩波的重构分析. 中国科学: 技术科学, 2012, 42: 713-721
[12]  31 Zhang X Y, Zong Q G, Wang Y F, et al. ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. J Geophys Res, 2010, 115: A10221
[13]  32 Matsumura C, Miyoshi Y, Seki K, et al. Outer radiation belt boundary location relative to the magnetopause: Implications for magnetopause shadowing. J Geophys Res, 2011, 116: A06212
[14]  33 Reeves G D, McAdams K L, Friedel R H W, et al. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett, 2003, 30: 1529
[15]  34 Shprits Y Y, Thorne R M, Friedel R, et al. Outward radial diffusion driven by losses at magnetopause. J Geophys Res, 2006, 111: A11214
[16]  35 Millan R M, Thorne R M. Review of radiation belt relativistic electron losses. J Atmos Sol-Terr Phys, 2007, 69: 362
[17]  36 Tu W, Li X, Chen Y, et al. Storm-dependent radiation belt electron dynamics. J Geophys Res, 2009, 114: A02217
[18]  37 Loto’aniu T M, Mann I R, Ozeke L G, et al. Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J Geophys Res, 2006, 111: A04218
[19]  38 O’Brien T P, Lorentzen K R, Mann I R, et al. Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration. J Geophys Res, 2003, 108(A8), doi: 10.1029/2002JA009784
[20]  39 Thorne R M, O’Brien T P, Shprits Y Y, et al. Timescale for mev electron microburst loss during geomagnetic storms. J Geophys Res, 2005, 110: A09202
[21]  40 Shprits Y Y, Meredith N P, Thorne R M. Parameterization of radiation belt electron loss timescales due to interactions with chorus waves. Geophys Res Lett, 2007, 34: L11110
[22]  41 Fu H S, Cao J B, Zong Q G, et al. The role of electrons during chorus intensification: Energy source and energy loss. J Atmos Sol-Terr Phys, 2012, 80: 37-47
[23]  42 Fu H, Cao J B, Mozer F, et al. Chorus intensification in response to interplanetary shock: THEMIS observations. J Geophys Res, 2011, 117: doi: 10.1029/2011JA016913
[24]  43 Voss H D, Walt M, Imhof W L, et al. Satellite observations of lightning-induced electron precipitation. J Geophys Res, 1998, 103: 11725-11744
[25]  44 Rodger C J, Clilverd M A, McCormick R J. Significance of lightning generated whistlers to inner radiation belt electron lifetimes. J Geophys Res, 2003, 108(A12), doi: 10.1029/2003JA009906
[26]  45 Bortnik J, Inan U S, Bell T F. Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 2. Global signatures. J Geophys Res, 2006, 111: A02205
[27]  46 Meredith N P, Horne R B, Clilverd M A, et al. Origins of plasmaspheric hiss. J Geophys Res, 2006, 111: A09217
[28]  78 Subbotin D, Shprits Y, Ni B. Three-dimensional VERB radiation belt simulations including mixed diffusion. J Geophys Res, 2010, 115: A03205
[29]  47 Meredith N P, Horne R B, Glauert S A, et al. Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers. J Geophys Res, 112: A08214
[30]  48 Iles R H A, Fazakerley A N, Johnstone A D, et al. The relativistic electron response in the outer radiation belt during magnetic storms. Ann Geophys, 2002, 20: 957-965
[31]  49 Crosby N B, Meredith N P, Coates A J, et al. Modelling the outer radiation belt as a complex system in a self-organised critical state. Nonlinear Process Geophys, 2005, 12: 993-1001
[32]  50 Baker D N, Kanekal S G, Blake J B. Characterizing the earth’s outer Van Allen zone using a radiation belt content index. Space Weather, 2004, 2: S02003
[33]  51 Selesnick R S, Kanekal S G.Variability of the total radiation belt electron content. J Geophys Res, 2009, 114: A02203
[34]  52 Rosen A. The radiation belt boundary near solar cycle maximum as determined from the trapping of energetic electrons. J Geophys Res, 1965, 70, doi: 10.1029/JZ070i019p04793
[35]  53 Imhof W L, Robinson R M, Nightingale R W, et al. The outer boundary of the Earths electron radiation belt: Dependence upon L, energy, and equatorial pitch angle. J Geophys Res, 1993, 98, doi: 10.1029/92JA02553
[36]  54 Li X, Baker D N, Obrien T P, et al. Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location. Geophys Res Lett, 2006, 33: L14107
[37]  55 Kataoka R, Miyoshi Y. Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Space Weather, 2006, 4: S09004
[38]  56 Miyoshi Y, Kataoka R. Solar cycle variations of outer radiation belt and its relationship to solar wind structure dependence. J Atmos Sol-Terr Phys, 2011, 73, doi: 10.1016/j.jastp.2010.09.031
[39]  57 Gonzalez W D, Tsurutani B T, Gonzalez A L. Interplanetary origin of geomagnetic storms. Space Sci Rev, 1999, 88: 529
[40]  58 Borovsky J E, Denton M H. The differences between cme driven storms and cir-driven storms. J Geophys Res, 2006, 111: A07S08
[41]  59 Tsurutani B T. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. Space Sci Rev, 1995, 100, 21: 717
[42]  60 Tappin S J, Howard T A. Direct observation of a corotating interaction region by three spacecraft. Astro J Lett, 2009, 70: 862-870
[43]  61 Borovsky J E, Denton M H. Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: The calm before the storm. J Geophys Res., 2009, 114: A11203
[44]  62 Walt M. Introduction to Geomagnetically Trapped Radiation. Cambridge: Cambridge University Press, 1994. 674
[45]  63 Huang C, Spence H E, Hudson M K, et al. Modeling radiation belt radial diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and particle codes. J Geophys Res, 2010, 115: A06216
[46]  64 袁憧憬, 宗秋刚. 磁暴期间外辐射带的1.5~6.0 MeV 电子通量变化. 中国科学: 技术科学, 2011, 41: 670-680
[47]  65 O’Brien T P, Moldwin M B. Empirical plasmapause models from magneticindices. Geophys Res Lett, 2003, 30, doi: 10.1029/2002GL016007
[48]  66 Lyons L R, Williams D J. Quantitative Aspects of Magnetospheric Physics. Dordrecht: D. Reidel Publishing Co, 1984
[49]  67 Miyoshi Y, Kataoka R. Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Geophys Res Lett, 2005, 32: L21105
[50]  68 Volland H. A semiempirical model of large-scale magnetospheric electric fields. J Geophys Res, 1973, 78: 171-180
[51]  69 Maynard N C, Chen A J. Isolated cold plasma regions: Observations and their relation to possible production mechanisms. J Geophys Res, 1975, 80: 1009-1013
[52]  70 Wrenn G L. Conclusive evidence for internal dielectric charging anomalies on geosynchronous communications spacecraft. J Spacecr Rockets, 1995, 32: 514-520
[53]  71 Wrenn G L, Rodgers D J, Ryden K A. A solar cycle of spacecraft anomalies due to internal charging. Ann Geophys, 2002, 20: 953-956
[54]  72 Baker D N. How to cope with space weather. Science, 2002, 297: 1486
[55]  73 Beutier T, Boscher D. A three-dimensional analysis of the electron radiation belt by the salammb? code. J Geophys Res, 1995, 100: 14853-14862
[56]  74 Varotsou A, Boscher D, Bourdarie S, et al. Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves. Geophys Res Lett, 2005, 32: L19106
[57]  75 Varotsou A, Boscher D S, Bourdarie S, et al. Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J Geophys Res, 2008, 113: A12212
[58]  76 Shprits Y Y, Subbotin D, Ni B. Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J Geophys Res, 2009, 115: A11209, doi: 10.1029/2008JA013784
[59]  77 Subbotin D A, Shprits Y Y. Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 2009, 7: S10001
[60]  92 Su Z, Zheng H, Wang S. Dynamic evolution of energetic outer zone electrons due to whistler-mode chorus based on a realistic density model. J Geophys Res, 2009, 114: A07201
[61]  93 Su Z, Zheng H, Wang S. Evolution of electron pitch angle distribution due to interactions with whistler-mode chorus following substorm injections. J Geophys Res, 2009, 114: A08202
[62]  94 Su Z, Zheng H, Xiong M. Dynamic evolution of outer radiation belt electrons due to whistler-mode chorus. Chin Phys Lett, 2009, 26: 039401
[63]  95 Fok M C, Glocer A, Zheng Q, et al. Recent developments in the radiation belt environment model. J Atmos Sol-Terr Phys, 2010, 73: 1435-1443
[64]  96 Su Z, Zheng H, Wang S. A parametric study on the diffuse auroral precipitation by resonant interaction with whistler-mode chorus. J Geophys Res, 2010, 115: A05219
[65]  97 Thorne R M, Ni B, Tao X, et al. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature, 2010, 467: 943
[66]  117 Looper M D, Blake J B, Mewaldt R A, et al. Observations of the remnants of the ultrarelativistic electrons injected by the strong SSC of 24 march 1991. Geophys Res Lett, 1995, 22: 2079-2082
[67]  118 Reeves G D, McAdams K L, Friedel R H W, et al. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett, 2003, 30: 1529
[68]  119 Baker D N, Kanekal S G, Li X, et al. An extreme distortion of the Van Allen belt arising from the ‘Halloween’ solar storm in 2003. Nature, 2004, 432: 878-881
[69]  120 Friedel R H W, Reevesa G, Obara T. Relativistic electron dynamics in the inner magnetosphere—A review. J Atmos Terr Phys, 2002, 64: 265-282
[70]  121 Baker D N, Pulkkinen T I, Li X, et al. A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophys Res Lett, 1998, 25: 2975-2978
[71]  122 Li X, Roth I, Temerin M, et al. Simulation of the prompt energization and transport of radiation belt particles during the march 24, 1991 SSC. Geophys Res Lett, 1993, 20: 2423-2426
[72]  123 Hudson M K, Kotelnikov A D, Li X, et al. Simulation of proton radiation belt formation during the March 24, 1991 SSC. Geophys Res Lett, 1995, 22: 291-294
[73]  127 Kress B T, Hudson M K, Looper M D. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. J Geophys Res, 2007, 112: A09215
[74]  128 Brice N. Fundamentals of very low frequency emission generation mechanisms. J Geophys Res, 1964, 69: 4515-4522
[75]  129 Kennel C F, Petschek H E. Limit on stably trapped particle fluxes. J Geophys Res, 1966, 71: 1-28
[76]  130 Lyons L R, Thorne R M. The magnetospheric reflection of whistlers. Planet Space Sci, 1970, 18: 1753-1767
[77]  131 Lyons L R, Thorne R M, Kennel C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res, 1972, 77: 3455-3474
[78]  132 Zong Q G. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105
[79]  133 Zong Q G, Wang Y F, Zhou X Z, et al. Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204
[80]  134 Yang B, Zong Q, Wang Y F, et al. Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. J Geophys Res, 2010, 115: 2214
[81]  135 Summers D, Thorne R M, Xiao F. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res, 1998, 103: 20487-20500
[82]  136 Rostoker G, Skone S, Baker D N. On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys Res Lett, 1998, 25: 3701-3704
[83]  137 Mathie R A, Mann I R. A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys Res Lett, 2000, 27: 3261-3264
[84]  138 O’Brien T P, Lorentzen K R, Mann I R, et al. Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration. J Geophys Res, 2003, 108: 1329
[85]  139 Horne R B, Thorne R M, Glauert S A, et al. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225
[86]  140 Chen Y, Reeves G D, Friedel R H W. The energization of relativistic electrons in the outer Van Allen radiation belt. Nat Phys, 2007, 3: 614-617
[87]  141 Claudepierre S G, Elkington S R, Wiltberger M. Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. J Geophys Res, 2008, 113: 5218
[88]  142 宗秋刚, 王永福, 杨彪, 等. ULF 波及其与能量粒子相互作用研究进展. 中国科学E辑: 技术科学, 2009, 39: 923-926
[89]  143 Hudson M, Kress B, Mueller H, et al. Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Terr Phys, 2008, 70: 708-729
[90]  144 Elkington S R, Hudson M K, Chan A A. Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J Geophys Res, 2003, 108: 111
[91]  145 Loto’aniu T M, Mann I R, Ozeke L G, et al. Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Hallo ween geomagnetic storms. J Geophys Res, 2006, 111: 4218
[92]  146 Tan L C, Fung S F, Shao X. Observation of magnetospheric relativistic electrons accelerated by Pc-5 ULF waves. Geophys Res Lett, 2004, 31: 14802
[93]  147 Mathie R A, Mann I R. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J Geophys Res, 2001, 106: 29783
[94]  148 Brown R R, Hartz T R, Landmark B, et al. Large-Scale electron bombardment of the atmosphere at the sudden ccommencement of a geomagnetic storm. J Geophys Res, 1961, 66: 1035
[95]  149 Southwood D J, Kivelson M G. Charged particle behavior in low-frequency geomagnetic pulsations: 1. Transverse waves. J Geophys Res,1981, 86: 5643-5655
[96]  150 Southwood D J, Kivelson M G. Charged particle behavior in low-frequency geomagnetic pulsations: 2. Graphical approach. J GeophysRes, 1982, 87: 1707-1710
[97]  151 Xie L, Zhang X J, Pu Z Y, et al. Ultra low frequency waves observed by Double Star TC-1 in the plasmasphere boundary layer. Sci China Ser E-Tech Sci, 2008, 51: 1685-1694
[98]  152 王永福, 傅绥燕, 宗秋刚, 等. 磁暴时ULF波多卫星联合观测研究. 中国科学E辑: 技术科学, 2009, 39: 299-309
[99]  153 Perry K L, Hudson M K, Elkington S R. Incorporating spectral characteristics of Pc5 waves into three-dimensional radiation belt modeling and the diffusion of relativistic electrons. J Geophys Res, 2005, 110: 3215
[100]  79 Albert J M, Meredith N P, Horne R B. Three-dimensional diffusion simulation of outer radiation belt electrons during the October 9, 1990, magnetic storm. J Geophys Res, 2009, 115: A09214
[101]  80 Su Z, Xiao F, Zheng H, et al. STEERB: A three-dimensional code for storm-time evolution of electron radiation belt. J Geophys Res, 2010, 115: A09208
[102]  81 Su Z, Zheng H, Wang S. Three dimensional simulations of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection. J Geophys Res, 2010, 115: A06203
[103]  82 Su Z, Xiao F, Zheng H, et al. Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles. J Geophys Res, 2010, 115: A10249
[104]  83 Su Z, Xiao F, Zheng H, et al. Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J Geophys Res, 2011, 116: A04205
[105]  84 Xiao F, Su Z, Zheng H et al. Three-dimensional simulations of outer radiation belt electron dynamics including cross diffusion terms. J Geophys Res, 2010, 115: A05216
[106]  85 Hilmer R V, Voigt G. A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters. J Geophys Res, 1995, 100: 5613-5626
[107]  86 Albert J M, Young S L. Multidimensional quasi-linear diffusion of radiation belt electrons. Geophys Res Lett, 2005, 32: L14110
[108]  87 Tao X, Chan A A, Albert J M, et al. Stochastic modeling of multidimensional diffusion in the radiation belts. J Geophys Res, 2008, 113: A07212
[109]  88 Tao X, Albert J M, Chan A A. Numerical modeling of multidimensional diffusion in the radiation belts using layer methods. J Geophys Res, 2009, 114: A02215
[110]  89 Xiao F, Su Z, Zheng H. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2009, 114: A03201
[111]  90 Xiao F, Zhang S, Su Z, et al. Rapid acceleration of radiation belt energetic electrons by Z-mode waves. Geophys Res Lett, 2012, 39: L03103
[112]  91 Su Z, Zheng H. Simulation of resonant interaction between energetic electrons and whistle rmode chorus in the outer radiation belt. Chin Phys Lett, 2008, 25: 4493-4496
[113]  98 Xiao F, Su Z, Zheng H, et al. A parametric study on outer radiation belt electron evolution by superluminous R-X mode waves. J Geophys Res, 2010, 115: A10217
[114]  99 Su Z, Zheng H, Chen L, et al. Numerical simulations of storm-time outer radiation belt dynamics by wave-particle interactions including cross diffusion. J Atmos Sol-Terr Phys, 2010, 73: 95-105
[115]  100 Tao X, Thorne R M, Li W, et al. Evolution of electron pitch angle distributions following injection from the plasma sheet. J Geophys Res, 2011, 116(A4): A04229
[116]  101 Xiao F, Chen L, He Y. Modeling of precipitation loss of ring current protons by electromagnetic ion cyclotron waves. J Atmos Sol-Terr Phys, 2011, 73: 106-111
[117]  102 Xiao F, He Z, Zhang S, et al. Diffusion simulation of outer radiation belt electron dynamics induced by superluminous l-o mode waves. Chin Phys Lett, 2011, 28: 039401
[118]  103 Zheng Q, Fok M, Albert J, et al. Effects of energy and pitch angle mixed diffusion on radiation belt electrons. J Atmos Sol-Terr Phys, 2011, 73: 785-795
[119]  104 Green J C, Onsager T G, O’Brien T P, et al. Testing loss mechanisms capable of rapidly depleting relativistic electron flux in the Earth’s outer radiation belt. J Geophys Res, 2004, 109: A12211
[120]  105 Su Z, Xiao F, Zheng H, et al. CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys Res Lett, 2011, 38: L06106
[121]  106 Dandouras I, Cao J, Vallat C. Energetic ion dynamics of the inner magnetosphere revealed in coordinated Cluster-Double Star observations. J Geophys Res, 2009, 114: A01S90
[122]  107 Wang Y F, Zong Q G. Study of the nose event on 11 April 2002 with UBK method. Sci China Tech Sci, 2012, 55: 1929-1942
[123]  108 Chapman S, Bartels J. Geomagnetism. United Kingdom: Oxford University Press, 1940
[124]  109 Brown W L, Cahill L J, Davis L R, et al. Acceleration of trapped particles during a magnetic storm on April 18, 1965. J Geophys Res, 1968, 73: 153-161
[125]  110 Matsushita S. Increase of ionization associated with geomagnetic sudden commencements. J Geophys Res, 1961, 66: 3958
[126]  111 Ullaland S L, Wilhelm K, Kangas J, et al. Electron precipitation associated with a sudden commencement of a geomagnetic storm. J Atmos Terr Phys, 1970, 32: 1545
[127]  112 Ortner J, Hultqvist B, Brown R R, et al. Cosmic noise absorption accompanying geomagnetic storm sudden commencements. J Geophys Res, 1962, 67: 4169
[128]  113 Arnoldy R L, Moore T E, Akasofu S I. Plasma injection events at synchronous orbit related to positive Dst. J Geophys Res, 1982, 87: 77-84
[129]  114 Blake J B, Kolasinski W A, Fillius R W, et al. Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991. Geophys Res Lett, 1992, 19: 821-824
[130]  115 Vampola A L, Korth A. Eletron drift echos in the inner magnetosphere. Geophys Res Lett, 1992, 19: 625-628
[131]  116 Wygant J, Mozer F, Temerin M, et al. Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes. Geophys Res Lett, 1994, 21: 1739-1742
[132]  124 Elkington S R, Hudson M K, Wiltberger M J, et al. MHD/particle simulations of radiation belt dynamics. J Atmos Terr Phys, 2002, 64: 607-615
[133]  125 Elkington S R, Wiltberger M, Chan A A, et al. Physical models of the geospace radiation environment. J Atmos Terr Phys, 2004, 66: 1371-1387
[134]  126 Gannon J L, Li X, Temerin M. Parametric study of shock-induced transport and energization of relativistic electrons in the magnetosphere. J Geophys Res, 2005, 110: A12206
[135]  1 Shi X F, Zong Q G, Wang Y F. Comparison between the ring current energy injection and decay under southward and northward IMF Bz conditions during geomagnetic storms. Sci China Tech Sci, 2012, 55: 2769
[136]  2 Zhao H, Zong Q G, Wei Y, et al. Influence of solar wind dynamic pressure on geomagnetic Dst index during various magnetic storms. Sci China Tech Sci, 2011, 54: 1445
[137]  3 Zhang Q H, Liu R Y, Yang H G, et al. SuperDARN CUTLASS Finland radar observations of high-latitude magnetic reconnections under northward interplanetary magnetic field (IMF) conditions. Sci China Tech Sci, 2012, 55: 1207
[138]  4 Cao J B, Wang Z Q, Ma Y D, et al. Differences between onset times of bursty bulk flows (BBFs) of two cluster satellites in the magnetotail. Sci China Tech Sci, 2012, 55: 1178
[139]  5 Ma Y D, Cao J B, Reme H, et al. Multi-spacecraft observations of earthward flow bursts. Sci China Tech Sci, 2012, 55: 1305
[140]  6 汪珊, 宗秋刚, 张慧. 基于Cluster卫星观测的太阳风热流异常事件的分析研究. 中国科学: 技术科学, 2012, 42: 737-754
[141]  7 He F, Zhang B C, Huang D H. Averaged NmF2 of cusp-latitude ionosphere in northern hemisphere for solar minimum-comparison between modeling and ESR during IPY. Sci China Tech Sci, 2012, 55: 1281
[142]  8 Tian T, Zong Q G, Wang Y F, et al. Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit. Sci China Tech Sci, 2012, 55: 2570
[143]  9 Reeves G D. The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophys Res Lett, 1998, 25: 3265-3268
[144]  10 Friedel R H W, Reeves G D, Obara T. Relativistic electron dynamics in the inner magnetosphere— A review. J Atmos Sol-Terr Phys, 2002, 64: 265-282
[145]  11 Kim H J, Chan A A. Fully-adiabatic changes in storm-time relativistic electron fluxes. J Geophys Res, 1997, 25: 1387-1392
[146]  12 Elkington S R, Hudson M K, Chan A A. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillation. Geophys Res Lett, 1999, 26: 3273-3276
[147]  13 Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ulf waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204
[148]  14 Li L Y, Cao J B, Zhou G C, et al. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population. J Geophys Res, 2009, 114: A12214
[149]  15 Fu H S, Cao J B, Yang B, et al. Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes. J Geophys Res, 2011, 116: A10210
[150]  16 Brice N. Fundamentals on very low frequency emission generation mechanisms. J Geophys Res, 1964, 69: 4515-4522
[151]  17 Kennel C F. Low-Frequncy whistler mode. Phys Fluids, 1966, 9: 2190-2202
[152]  18 Lyons L R, Thorne R M, Kennel C F. Pitch-angle diffusion of radiation belts electrons within the plasmasphere. J Geophys Res, 1972, 77: 3455-3474
[153]  19 Abel B, Thorne R M. Electron scattering loss in Earth’s inner magnetosphere 1: Dominant physical processes. J Geophys Res, 1998, 103: 2385-2396

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133