Allison J D, Brown D S, Novo-Gradac K J. 1991. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User''s Manual. EPA 600-3-91021. Georgia: Environmental Research Laboratory Office of Research and Development U. S. Environmental Protection Agency Athens. 30605
[2]
Ball J W, Nordstrom D K. 1991. User''s manual for WATEQ4F, with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. U. S. Geological Survey, Open-File Report. 91-183
[3]
Cai C F , Li K K, Li H T. 2008. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Appl Geochem, 23: 2226-2235
[4]
Cai C F, Franks S G, Aagaard P. 2001. Origin and migration of brines from Paleozoic strata in Central Tarim, China: Constraints from 87Sr/86Sr, δD, δ18O and water chemistry. Appl Geochem, 16: 1269-1283
[5]
Cai C F, Worden R H, Wang Q H, et al. 2002. Chemical and isotopic evidence for secondary alteration of nature gas in the Hetianhe Field, Bachu uplift of the Tarim Basin. Org Geochem, 33: 1415-1427
[6]
Denison R E, Koepnick R B, Burke W H, et al. 1998. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem Geol, 152: 325-340
[7]
Duan Z H, Li D D. 2008. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250℃, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta, 72: 5128-5145
[8]
Duan Z H, Zhang Z G. 2006. Equation of state of the H2O-CO2 system up to 10 GPa and 2573K: Molecular dynamics simulations with ab initio potential surface. Geochim Cosmochim Acta, 70: 2311-2324
[9]
Friedman I, O''Neil J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. U S Geol Surv Prof Paper, 440 KK: 12
[10]
Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci, 24: 225-262
[11]
Li K K, Cai C F, He H, et al. 2011. Origin of paleo-waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin: Constraints from fluid inclusions and Sr, C and O isotopes. Geofluids, 11: 71-86
[12]
Matthews A, Lieberman J, Avigad D, et al. 1999. Fluid-rock interaction and thermal evolution during thrusting of an Alpine metamorphic complex (Tinos island, Greece). Contrib Mineral Petrol, 135: 212-224
[13]
Mores J W, Avidson R S. 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Sci Rev, 58: 51-84
[14]
Morrison J. 2007. Meteoric water-rock interaction in the lower plate of the Whipple Mountain metamorphic core complex, California. J Metamorph Geol, 12: 827-840
[15]
O''Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys, 51: 5547
[16]
Parkhurst D L, Appelo C A J. 1999. User''s guide to PHREEQC (version 2)--A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Survey, Water-Resources Investigations Report. 99-4259
[17]
Plummer L N, Parkhurst D L, Fleming G W, et al. 1988. A computer program incorporating Pitzer''s equationsfor calculation of geochemical reactions in brines. U. S. Geological Survey. Water-Resources Investigations Report. 88-4153
[18]
Savin S M, Epstein S. 1970. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta, 34: 25-42
[19]
Sheppard M F, Nielsen R L, Taylor H P, et al. 1969. Oxygen isotope ratios of clay minerals from porphyrycopper deposits. Econ Geol, 64: 755-777
[20]
Veizer J, Ala D, Azmy K, et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59-88
[21]
Winter B L, Johnson C M, Clark D. 1997. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater. Geochim Cosmochim Acta, 61: 4181-4200brian and Ordovician seawater 87Sr/86Sr curve. Chem Geol, 152: 325-340
[22]
Duan Z H, Li D D. 2008. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250℃, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta, 72: 5128-5145
[23]
Duan Z H, Zhang Z G. 2006. Equation of state of the H2O-CO2 system up to 10 GPa and 2573K: Molecular dynamics simulations with ab initio potential surface. Geochim Cosmochim Acta,70: 2311-2324
[24]
Friedman I, O''Neil J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. U S Geol Surv Prof Paper, 440 KK: 12
[25]
Irwin H, Curtis C, Coleman M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments. Nature, 269: 209-213
[26]
Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci, 24: 225-262
[27]
Li K K, Cai C F, He H, et al. 2011. Origin of paleo-waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin: Constraints from fluid inclusions and Sr, C and O isotopes. Geofluids, 11: 71-86
[28]
Matthews A, Lieberman J, Avigad D, et al. 1999. Fluid-rock interaction and thermal evolution during thrusting of an Alpine metamorphic complex (Tinos island, Greece). Contrib Mineral Petrol, 135: 212-224
[29]
Mores J W, Avidson R S. 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Sci Rev, 58: 51-84
[30]
Morrison J. 2007. Meteoric water-rock interaction in the lower plate of the Whipple Mountain metamorphic core complex, California. J Metamorph Geol, 12: 827-840
[31]
O''Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys, 51: 5547
Irwin H, Curtis C, Coleman M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments. Nature, 269: 209-213
[48]
Parkhurst D L, Appelo C A J. 1999. User''s guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Survey, Water-Resources Investigations Report. 99-4259
[49]
Plummer L N, Parkhurst D L, Fleming G W, et al. 1988. A computer program incorporating Pitzer''s equationsfor calculation of geochemical reactions in brines. Water-Resources Investigations Report. 88-4153. U. S. Geological Survey
[50]
Savin S M, Epstein S. 1970. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta, 34: 25-42
[51]
Sheppard M F, Nielsen R L, Taylor H P, et al. 1969. Oxygen isotope ratios of clay minerals from porphyrycopper deposits. Econ Geol, 64: 755-777
[52]
Veizer J, Ala D, Azmy K, et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59-88
[53]
Winter B L, Johnson C M, Clark D. 1997. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater. Geochim Cosmochim Acta, 61: 4181-4200 ?