全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热力学和动力学双重控制下的大气降水溶蚀-充填机制

, PP. 1797-1806

Keywords: 塔里木,碳酸盐岩,岩溶,充填,热力学,动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?受构造抬升运动的影响,塔里木盆地奥陶系碳酸盐岩多次暴露至地表遭受大气降水溶蚀改造,形成丰富的岩溶孔洞型油气储集空间.但钻井表明许多大型岩溶洞穴、小的孔洞、裂缝等遭受方解石的充填,造成储集性能变差.塔北地区奥陶系岩溶孔洞中所充填的方解石具有非常轻的氧同位素组成和高的87Sr/86Sr比值,其δ18OPDB位于-21.2‰~-13.3‰,平均值为-16.3‰,87Sr/86Sr比值位于0.709561~0.710070,平均值为0.709843.同位素组成表明岩溶孔洞中所充填的方解石与大气降水有关.理论分析表明,大气降水对碳酸盐岩的溶蚀和充填作用受热力学和动力学双重机制控制.碳酸盐岩溶解的热力学因素决定大气降水在从地表向地下流动过程中对碳酸盐岩具有从溶解到饱和再到沉淀充填的作用特征,即地表之下大气降水对碳酸盐岩溶蚀作用发育的深度具有一定限度,而不能无限制的向深处发展;碳酸盐岩溶解的动力学因素控制着岩溶作用发育的强度、深度和广度,即岩溶作用还受地形地貌、气候、断裂/裂缝发育程度等多种因素制约.在热力学和动力学因素共同控制下,大气降水对塔里木盆地奥陶系碳酸盐岩的岩溶作用仅在不整合面之下一定深度(多数200m)范围内发生,再往深处则会沉淀碳酸盐岩矿物,从而造成对已有空间的充填作用.

References

[1]  Allison J D, Brown D S, Novo-Gradac K J. 1991. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User''s Manual. EPA 600-3-91021. Georgia: Environmental Research Laboratory Office of Research and Development U. S. Environmental Protection Agency Athens. 30605
[2]  Ball J W, Nordstrom D K. 1991. User''s manual for WATEQ4F, with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. U. S. Geological Survey, Open-File Report. 91-183
[3]  Cai C F , Li K K, Li H T. 2008. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Appl Geochem, 23: 2226-2235
[4]  Cai C F, Franks S G, Aagaard P. 2001. Origin and migration of brines from Paleozoic strata in Central Tarim, China: Constraints from 87Sr/86Sr, δD, δ18O and water chemistry. Appl Geochem, 16: 1269-1283
[5]  Cai C F, Worden R H, Wang Q H, et al. 2002. Chemical and isotopic evidence for secondary alteration of nature gas in the Hetianhe Field, Bachu uplift of the Tarim Basin. Org Geochem, 33: 1415-1427
[6]  Denison R E, Koepnick R B, Burke W H, et al. 1998. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem Geol, 152: 325-340
[7]  Duan Z H, Li D D. 2008. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250℃, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta, 72: 5128-5145
[8]  Duan Z H, Zhang Z G. 2006. Equation of state of the H2O-CO2 system up to 10 GPa and 2573K: Molecular dynamics simulations with ab initio potential surface. Geochim Cosmochim Acta, 70: 2311-2324
[9]  Friedman I, O''Neil J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. U S Geol Surv Prof Paper, 440 KK: 12
[10]  Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci, 24: 225-262
[11]  Li K K, Cai C F, He H, et al. 2011. Origin of paleo-waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin: Constraints from fluid inclusions and Sr, C and O isotopes. Geofluids, 11: 71-86
[12]  Matthews A, Lieberman J, Avigad D, et al. 1999. Fluid-rock interaction and thermal evolution during thrusting of an Alpine metamorphic complex (Tinos island, Greece). Contrib Mineral Petrol, 135: 212-224
[13]  Mores J W, Avidson R S. 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Sci Rev, 58: 51-84
[14]  Morrison J. 2007. Meteoric water-rock interaction in the lower plate of the Whipple Mountain metamorphic core complex, California. J Metamorph Geol, 12: 827-840
[15]  O''Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys, 51: 5547
[16]  Parkhurst D L, Appelo C A J. 1999. User''s guide to PHREEQC (version 2)--A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Survey, Water-Resources Investigations Report. 99-4259
[17]  Plummer L N, Parkhurst D L, Fleming G W, et al. 1988. A computer program incorporating Pitzer''s equationsfor calculation of geochemical reactions in brines. U. S. Geological Survey. Water-Resources Investigations Report. 88-4153
[18]  Savin S M, Epstein S. 1970. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta, 34: 25-42
[19]  Sheppard M F, Nielsen R L, Taylor H P, et al. 1969. Oxygen isotope ratios of clay minerals from porphyrycopper deposits. Econ Geol, 64: 755-777
[20]  Veizer J, Ala D, Azmy K, et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59-88
[21]  Winter B L, Johnson C M, Clark D. 1997. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater. Geochim Cosmochim Acta, 61: 4181-4200brian and Ordovician seawater 87Sr/86Sr curve. Chem Geol, 152: 325-340
[22]  Duan Z H, Li D D. 2008. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250℃, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta, 72: 5128-5145
[23]  Duan Z H, Zhang Z G. 2006. Equation of state of the H2O-CO2 system up to 10 GPa and 2573K: Molecular dynamics simulations with ab initio potential surface. Geochim Cosmochim Acta,70: 2311-2324
[24]  Friedman I, O''Neil J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. U S Geol Surv Prof Paper, 440 KK: 12
[25]  Irwin H, Curtis C, Coleman M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments. Nature, 269: 209-213
[26]  Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci, 24: 225-262
[27]  Li K K, Cai C F, He H, et al. 2011. Origin of paleo-waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin: Constraints from fluid inclusions and Sr, C and O isotopes. Geofluids, 11: 71-86
[28]  Matthews A, Lieberman J, Avigad D, et al. 1999. Fluid-rock interaction and thermal evolution during thrusting of an Alpine metamorphic complex (Tinos island, Greece). Contrib Mineral Petrol, 135: 212-224
[29]  Mores J W, Avidson R S. 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Sci Rev, 58: 51-84
[30]  Morrison J. 2007. Meteoric water-rock interaction in the lower plate of the Whipple Mountain metamorphic core complex, California. J Metamorph Geol, 12: 827-840
[31]  O''Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys, 51: 5547
[32]  蔡春芳, 李开开, 李斌, 等. 2009. 塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析. 岩石学报, 25: 2399-2404
[33]  陈强路, 何治亮, 李思田. 2007. 塔中地区奥陶系碳酸盐岩储层与油气聚集带. 石油实验地质, 29: 367-372
[34]  陈瑞银, 赵文智, 张水昌, 等. 2009. 塔里木盆地下古生界油气晚期成烃成藏的地质依据. 地学前缘, 16: 173-181
[35]  贾承造. 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社
[36]  李慧莉, 邱楠生, 金之钧, 等. 2005. 塔里木盆地的热史. 石油与天然气地质, 26: 613-617
[37]  刘春燕, 吴茂炳, 巩固. 2006. 塔里木盆地北部塔河油田奥陶系加里东期岩溶作用及其油气地质意义. 地质通报, 25: 1128-1134
[38]  刘存革, 李国蓉, 张一伟, 等. 2007. 锶同位素在古岩溶研究中的应用——以塔河油田奥陶系为例. 地质学报, 81: 1398-1406
[39]  苗继军, 贾承造, 邹才能, 等. 2007. 塔中地区下奥陶统岩溶风化壳储层特征与勘探领域. 天然气地球科学, 18: 497-500, 606
[40]  闫相宾. 2002. 塔河油田下奥陶统古岩溶作用及储层特征. 江汉石油学院学报, 24: 23-25
[41]  闫相宾, 李铁军, 张涛, 等. 2005. 塔中与塔河地区奥陶系岩溶储层形成条件的差异. 石油与天然气地质, 26: 202-207
[42]  云露, 肖志高, 徐明军. 2004. 浅谈塔里木盆地台盆区天然气勘探前景. 石油与天然气地质, 25: 429-432
[43]  张涛, 蔡希源. 2007. 塔河地区加里东中期古岩溶作用及分布模式. 地质学报, 81: 1125-1134
[44]  张云霄. 2000. 西天山咔拉达拉基性岩及其构造背景. 新疆地质, 18: 258-263
[45]  郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社
[46]  邬光辉, 陈利新, 徐志明, 等. 2008. 塔中奥陶系碳酸盐岩油气成藏机理. 天然气工业, 28: 19-22
[47]  Irwin H, Curtis C, Coleman M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments. Nature, 269: 209-213
[48]  Parkhurst D L, Appelo C A J. 1999. User''s guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Survey, Water-Resources Investigations Report. 99-4259
[49]  Plummer L N, Parkhurst D L, Fleming G W, et al. 1988. A computer program incorporating Pitzer''s equationsfor calculation of geochemical reactions in brines. Water-Resources Investigations Report. 88-4153. U. S. Geological Survey
[50]  Savin S M, Epstein S. 1970. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta, 34: 25-42
[51]  Sheppard M F, Nielsen R L, Taylor H P, et al. 1969. Oxygen isotope ratios of clay minerals from porphyrycopper deposits. Econ Geol, 64: 755-777
[52]  Veizer J, Ala D, Azmy K, et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59-88
[53]  Winter B L, Johnson C M, Clark D. 1997. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater. Geochim Cosmochim Acta, 61: 4181-4200 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133