Barrett E P, Johner L S, Halenda P P. 1951. The determination of pore volume and area distributions in porous substances I. Computations from nitrogen isotherms. J Am Chem Soc, 73: 373-380
[8]
Bernard S, Horsfield B, Schulz H M, et al. 2012. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar Petrol Geol, 31: 70-89
[9]
Brunauer S, Emmet P H, Teller E. 1938. Adsorption of gases in multimolecular layers. J Am Chem Soc, 60: 309-319
[10]
Chalmers G R L, Bustin R M. 2007. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. Int J Coal Geol, 70: 223-239
[11]
Chalmers G R L, Bustin R M. 2008a. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. B Can Petrol Geol, 56: 1-21
[12]
Chalmers G R L, Bustin R M. 2008b. Lower Cretaceous gas shales in northeastern British Columbia, Part II: Evaluation of regional potential gas resources. B Can Petrol Geol, 56: 22-61
[13]
Clarkson C R, Jensen J L, Pederssen P K, et al. 2012a. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir. AAPG Bull, 96: 355-374
[14]
Clarkson C R, Wood J M, Burgis S E, et al. 2012b. Nanopore-structure analysis and permeability predictions for a tight gas siltstone reservoir by use of low pressure adsorption and mercury intrusion techniques. Spec Reserv Eval Eng, 6: 641-648
Curtis M E, Ambrose R J, Sondergeld C H, et al. 2010. Structural characterization of gas shales on the micro-and nano-scales. CUSG/SPE 137693
[17]
Curtis M E, Cardott B J, Sondergeld C H, et al. 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int J Coal Geol, 10: 26-31
[18]
Elgmati M, Zhang H, Bai B J, et al. 2011. Submicro-pore characterization of shale gas plays. SPE 144050
[19]
Gasparik M, Bertier P, Gensterblum Y, et al. 2014. Geological controls on the methane stroage capacity in organic-rich shales. Int J Coal Geol, 123: 34-51
[20]
Groen J C, Peffer L A A, Perez-Ramirez J. 2003. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas desorption data analysis. Micropor Mesopor Mat, 60: 1-17
[21]
Hao F, Zou H Y, Lu Y C, et al. 2013. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull, 97: 1325-1346
[22]
Ji L M, Zhang T W, Milliken K L, et al. 2012. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl Geochem, 27: 2533-2545
[23]
Kuila U, Prasad M, Derkowski A, et al. 2012.Compositional controls on mudrock pore-size distribution: An example from Nibrara formation. SPE 160141
[24]
Tiwari P, Deo M, Lin C L, et al. 2013. Characterization of oil shale pore structure before and after pyrolysis by using X-ray CT. Fuel, 107: 547-554
[25]
Wang S B,Song Z G,Cao T T,et al. 2013. The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Mar Petrol Geol,44: 112-119
[26]
Zhang T W, Ellis G S, Ruppel S C, et al. 2012. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org Geochem, 47: 120-131
[27]
Kuila U, Prasad M. 2013. Specific surface area and pore-size distribution in clays and shales. Geophys Prospect, 61: 341-362
[28]
Liu D, Yuan P, Liu H M, et al. 2013. High-pressure adsorption of methane on montmorillite, kaolinite and illite. Appl Clay Sci, 85: 25-30
[29]
Loucks R G, Reed R M, Ruppel S C, et al. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. J Sediment Res, 79: 848-861
[30]
Loucks R G, Reed R M, Ruppel S C, et al. 2012. Spectrum of pore types and networks in mudrocks and descriptive classification for matrix-related mudrocks pores. AAPG Bull, 96: 1071-1098
[31]
Lu X C, Li F C, Watson A T. 1995. Adsorption measurements in Devonian shales. Fuel, 74: 599-603
[32]
Mastalerz M, Schimmelmann A, Drobniak A, et al. 2013. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull, 97: 1621-1643
[33]
Montgomery S L, Jarvie D M, Bowker K A, et al. 2005. Mississippian Barnett Shale, Fort Worth Basin, northcentral Texas: Gas-shale play with multitrillion cubic foot potential. AAPG Bull, 89: 155-175
[34]
Ross D J K, Bustin R M. 2007. Shale gas potential of the Lower Jurassic Gardondale member, northeastern British Columbia, Canada. B Can Petrol Geol, 55: 51-75
[35]
Ross D J K, Bustin R M. 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Petrol Geol, 26: 916-927
[36]
Sing, K S. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 57: 603-619
[37]
Strapoc D, Mastalerz M, Schimmelmann A, et al. 2010. Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian), eastern Illinois Basin. AAPG Bull, 94: 1713-1740
[38]
Tian H, Pan L, Xiao X M, et al.2013. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods. Mar Petrol Geol, 48: 8-19