全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同页岩及干酪根比表面积和孔隙结构的比较研究

, PP. 139-151

Keywords: 古生界不同页岩,干酪根,比表面积,纳米孔隙,成熟度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?运用氮气吸附和扫描电子显微镜实验研究了中国南方古生界不同页岩及其干酪根孔隙发育形态及影响因素.结果显示:二叠系大隆组页岩比表面积介于2.22~3.52m2g-1,比表面积与TOC含量之间没有相关性;干酪根纳米孔隙不发育,比表面积为20.35~27.49m2g-1;志留系龙马溪组页岩比表面积介于17.83~29.49m2g-1,比表面积与TOC含量之间有极好的正相关性;干酪根纳米孔隙发育很好,比表面积高达279.84~300.3m2g-1;寒武系牛蹄塘组页岩比表面积介于20.12~29.49m2g-1,比表面积随TOC含量和蒙脱石含量增加而增加;干酪根发育有一定量的纳米孔隙,比表面积为161.2m2g-1.作为比对样品,油柑窝组油页岩比表面积为19.99m2g-1;干酪根孔隙极不发育,比表面积仅为5.54m2g-1,说明了油页岩的比表面积可能主要是来自蒙脱石等粘土矿物的贡献.页岩比表面积的高低及孔隙的多少与有机质含量、类型、成熟度和蒙脱石含量等因素密切相关.低成熟干酪根基本没有孔隙发育而显示出极低的比表面积;高过成熟干酪根具有较好的孔隙发育及较高的比表面积.龙马溪组干酪根比牛蹄塘组干酪根具有更为发育的纳米孔隙和更高的比表面积,这可能与它们的干酪根类型及显微组分等因素有关.较高的蒙脱石含量也会对页岩比表面积有一定的贡献.低成熟干酪根的孔容和比表面积主要是来自大于10nm孔的贡献,高过成熟干酪根的孔容主要是大于10nm孔的贡献,但4nm左右孔也有一定的贡献,比表面积则主要是来自小于4nm孔的贡献.通过对比研究不同页岩及干酪根的比表面积与孔隙结构可以得出龙马溪组和牛蹄塘组页岩比大隆组页岩具有更强的吸附能力.

References

[1]  白振瑞. 2013. 遵义-綦江地区下寒武统牛蹄塘组页岩沉积特征及页岩气评价参数研究. 博士学位论文. 北京: 中国地质大学. 52-56
[2]  刘树根, 马辛文, Jansa L, 等. 2011. 四川盆地东部地区下志留统龙马溪组页岩储层特征. 岩石学报, 27: 2239-2253
[3]  宋叙, 王思波, 曹涛涛, 等. 2013. 扬子地台寒武系泥页岩甲烷吸附特征. 地质学报, 877: 1041-1048
[4]  夏茂龙, 文龙, 王一刚, 等. 2010. 四川盆地上二叠统海槽相大隆组优质烃源岩. 石油勘探与开发, 37: 654-662
[5]  杨峰, 宁正福, 张世栋, 等. 2013. 基于氮气吸附实验的孔隙结构表征. 天然气工业, 33: 135-140
[6]  邹才能, 董大忠, 王社教, 等. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37: 641-653
[7]  Barrett E P, Johner L S, Halenda P P. 1951. The determination of pore volume and area distributions in porous substances I. Computations from nitrogen isotherms. J Am Chem Soc, 73: 373-380
[8]  Bernard S, Horsfield B, Schulz H M, et al. 2012. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar Petrol Geol, 31: 70-89
[9]  Brunauer S, Emmet P H, Teller E. 1938. Adsorption of gases in multimolecular layers. J Am Chem Soc, 60: 309-319
[10]  Chalmers G R L, Bustin R M. 2007. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. Int J Coal Geol, 70: 223-239
[11]  Chalmers G R L, Bustin R M. 2008a. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. B Can Petrol Geol, 56: 1-21
[12]  Chalmers G R L, Bustin R M. 2008b. Lower Cretaceous gas shales in northeastern British Columbia, Part II: Evaluation of regional potential gas resources. B Can Petrol Geol, 56: 22-61
[13]  Clarkson C R, Jensen J L, Pederssen P K, et al. 2012a. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir. AAPG Bull, 96: 355-374
[14]  Clarkson C R, Wood J M, Burgis S E, et al. 2012b. Nanopore-structure analysis and permeability predictions for a tight gas siltstone reservoir by use of low pressure adsorption and mercury intrusion techniques. Spec Reserv Eval Eng, 6: 641-648
[15]  Curtis J B. 2002. Fractured shale-gas systems. AAPG Bull, 86: 1921-1938
[16]  Curtis M E, Ambrose R J, Sondergeld C H, et al. 2010. Structural characterization of gas shales on the micro-and nano-scales. CUSG/SPE 137693
[17]  Curtis M E, Cardott B J, Sondergeld C H, et al. 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int J Coal Geol, 10: 26-31
[18]  Elgmati M, Zhang H, Bai B J, et al. 2011. Submicro-pore characterization of shale gas plays. SPE 144050
[19]  Gasparik M, Bertier P, Gensterblum Y, et al. 2014. Geological controls on the methane stroage capacity in organic-rich shales. Int J Coal Geol, 123: 34-51
[20]  Groen J C, Peffer L A A, Perez-Ramirez J. 2003. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas desorption data analysis. Micropor Mesopor Mat, 60: 1-17
[21]  Hao F, Zou H Y, Lu Y C, et al. 2013. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull, 97: 1325-1346
[22]  Ji L M, Zhang T W, Milliken K L, et al. 2012. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl Geochem, 27: 2533-2545
[23]  Kuila U, Prasad M, Derkowski A, et al. 2012.Compositional controls on mudrock pore-size distribution: An example from Nibrara formation. SPE 160141
[24]  Tiwari P, Deo M, Lin C L, et al. 2013. Characterization of oil shale pore structure before and after pyrolysis by using X-ray CT. Fuel, 107: 547-554
[25]  Wang S B,Song Z G,Cao T T,et al. 2013. The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Mar Petrol Geol,44: 112-119
[26]  Zhang T W, Ellis G S, Ruppel S C, et al. 2012. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org Geochem, 47: 120-131
[27]  Kuila U, Prasad M. 2013. Specific surface area and pore-size distribution in clays and shales. Geophys Prospect, 61: 341-362
[28]  Liu D, Yuan P, Liu H M, et al. 2013. High-pressure adsorption of methane on montmorillite, kaolinite and illite. Appl Clay Sci, 85: 25-30
[29]  Loucks R G, Reed R M, Ruppel S C, et al. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. J Sediment Res, 79: 848-861
[30]  Loucks R G, Reed R M, Ruppel S C, et al. 2012. Spectrum of pore types and networks in mudrocks and descriptive classification for matrix-related mudrocks pores. AAPG Bull, 96: 1071-1098
[31]  Lu X C, Li F C, Watson A T. 1995. Adsorption measurements in Devonian shales. Fuel, 74: 599-603
[32]  Mastalerz M, Schimmelmann A, Drobniak A, et al. 2013. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull, 97: 1621-1643
[33]  Montgomery S L, Jarvie D M, Bowker K A, et al. 2005. Mississippian Barnett Shale, Fort Worth Basin, northcentral Texas: Gas-shale play with multitrillion cubic foot potential. AAPG Bull, 89: 155-175
[34]  Ross D J K, Bustin R M. 2007. Shale gas potential of the Lower Jurassic Gardondale member, northeastern British Columbia, Canada. B Can Petrol Geol, 55: 51-75
[35]  Ross D J K, Bustin R M. 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Petrol Geol, 26: 916-927
[36]  Sing, K S. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 57: 603-619
[37]  Strapoc D, Mastalerz M, Schimmelmann A, et al. 2010. Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian), eastern Illinois Basin. AAPG Bull, 94: 1713-1740
[38]  Tian H, Pan L, Xiao X M, et al.2013. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods. Mar Petrol Geol, 48: 8-19

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133