全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肝癌细胞分泌蛋白质的多种提取方法比较

, PP. 853-858

Keywords: 肝癌,分泌蛋白,蛋白提取,超滤,沉淀,透析,LC-MS/MS

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于分泌蛋白在重大生理和病理过程中的重要角色和功能,使得分泌蛋白质组的研究备受人们关注.高效提取分泌蛋白质是分泌蛋白质组学研究的第一步,也是关键的一步.本研究首次比较了3种常用的提取方法:超滤法、沉淀法和透析法.以具有高自发性转移潜能的人肝癌细胞系LM3为研究对象,采用3种方法平行提取分泌蛋白,发现超滤法的提取效率最高;蛋白质经过溶液酶解,在线的一维反相高效液相色谱分离和ESI-MS/MS质谱鉴定,共鉴定了360个非冗余蛋白,其中有34,110和29个蛋白分别只在超滤法、沉淀法和透析法提取的样品中被鉴定到,沉淀法占优势,3种方法互相补充.360个蛋白中,有42个分泌蛋白为首次被鉴定到,扩大了已有的人肝癌转移细胞分泌蛋白数据库.

References

[1]  1 Welsh J B, Sapinoso L M, Kern S G, et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum.
[2]  Proc Natl Acad Sci USA, 2003, 100: 3410—3415
[3]  2 Huang C M, Ananthaswamy H N, Barnes S, et al. Mass spectrometric proteomics profiles of in vivo tumor secretomes: capillary
[4]  ultrafiltration sampling of regressive tumor masses. Proteomics, 2006, 6: 6107—6116
[5]  3 Mbeunkui F, Metge B J, Shevde L A, et al. Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines
[6]  representing a progression of breast cancer. J Proteome Res, 2007, 6: 2993—3002
[7]  4 Ye Q H, Qin L X, Forgues M, et al. Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression
[8]  profiling and supervised machine learning. Nat Med, 2003, 9: 416—423
[9]  5 Gupta G P, Massagué J. Cancer metastasis: building a framework. Cell, 2006, 127: 679—695
[10]  6 Tang Z Y, Ye S L, Liu Y K, et al. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol, 2004, 130: 187—
[11]  196
[12]  7 Diehl H C, Stuhler K, Volmer M W, et al. A catalogue of proteins released by colorectal cancer cells in vitro as an alternative source for
[13]  biomarker discovery. Proteomics Clin Appl, 2007, 1: 47—61
[14]  8 Pellitteri-Hahn M C, Warren M C, Didier D N, et al. Improved mass spectrometric proteomic profiling of the secretome of rat vascular
[15]  endothelial cells. J Proteome Res, 2006, 5: 2861—2864
[16]  9 Yamashita R, Fujiwara Y, Ikari K, et al. Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid
[17]  chromatography coupled with tandem mass spectrometry. Mol Cell Biochem, 2007, 298: 83—92
[18]  10 Zwickl H, Traxler E, Staettner S, et al. A novel technique to specifically analyze the secretome of cells and tissues. Electrophoresis, 2005,
[19]  26: 2779—2785
[20]  11 Trost M, Wehmh?ner D D, K?rst U, et al. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria
[21]  species. Proteomics, 2005, 5: 1544—1557
[22]  12 Chan X C, McDermott J C, Siu K W. Identification of secreted proteins during skeletal muscle development. J Proteome Res, 2007, 6:
[23]  698—710
[24]  13 Sardana G, Marshall J, Diamandis E P. Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell
[25]  culture-conditioned medium. Clin Chem, 2007, 53: 429—437
[26]  14 Lou X M, Xiao T, Zhao K, et al. Cathepsin D is secreted from M-BE cells: its potential role as a biomarker of lung cancer. J Proteome Res,
[27]  2007, 6: 1083—1092
[28]  15 Wu C C, Cheng H C, Chen S J, et al. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by
[29]  comparative analysis of cancer cell secretomes. Proteomics, 2008, 8: 316—332
[30]  16 Li Y, Tang Z Y, Ye S L, et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo
[31]  selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol, 2003, 129: 43—51
[32]  17 Mbeunkui F, Fodstad O, Pannell L K. Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using
[33]  2D LC-MS/MS. J Proteome Res, 2006, 5: 899—906
[34]  18 Chevallet M, Diemer H, Dorssealer A V, et al. Toward a better analysis of secreted proteins: the example of the myeloid cells secretome.
[35]  Proteomics, 2007, 7: 1757—1770
[36]  19 Cao J, Shen C, Wang H, et al. Identification of N-Glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a
[37]  complementary proteomics approach. J Proteome Res, 2009, 8: 662—672
[38]  20 Callister S J, Dominguez M A, Nicora C D, et al. Application of the accurate mass and time tag approach to the proteome analysis of subcellular
[39]  fractions obtained from rhodobacter sphaeroides 2.4.1. aerobic and photosynthetic cell cultures. J Proteome Res, 2006, 5: 1940—
[40]  1947
[41]  21 Chen M, Ying W T, Song Y P, et al. Analysis of human liver proteome using replicate shotgun strategy. Proteomics, 2007, 7: 2479
[42]  22 Bendtsen J D, Jensen L J, Blom N, et al. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel,
[43]  2004, 17: 349—356
[44]  23 Krogh A, Larsson B, Heijne G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete
[45]  genomes. J Mol Biol, 2001, 305: 567—580
[46]  24 Antelmann H, Tjalsma H, Voigt B, et al. A proteomic view on genome-based signal peptide predictions. Genome Res, 2001, 11: 1484—
[47]  1502
[48]  25 Zhang Z, Henzel W J. Signal peptide prediction based on analysis of experimentally. Protein Sci, 2004, 13: 2819—2824
[49]  26 Cao J, Hu Y, Shen C, et al. Zeolite LTL nanocrystal-driving high efficient enrichment of secretory proteins in human hepatocellular
[50]  carcinoma cells. Proteomics, 2009, 9: 4881—4888
[51]  27 Chen Y J, Zhang Y, Yin Y, et al. SPD: a web-based secreted protein database. Nucleic Acids Res, 2005, 33: 169—173

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133