全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

猪囊胚microRNA定量PCR分析中适宜内参基因的选择

, PP. 203-208

Keywords: 内参基因,定量PCR,microRNA,囊胚

Full-Text   Cite this paper   Add to My Lib

Abstract:

在定量PCR中,通常使用表达量恒定的基因作为内参对实验结果进行校正,以得到准确的定量结果.本实验用低密度芯片方法对猪体细胞核移植(SCNT)、体外受精(IVF)、体内受精(IVO)及孤雌(PA)囊胚的microRNA表达情况进行了定量分析,结果发现,4种类型胚胎共同表达的microRNA数目为36种,其中11种microRNA的表达量不受胚胎种类的影响(P>0.05).以这11种microRNA为候选内参基因用GeNorm(一种以两两比较为模型,计算样品中所有候选内参基因稳定值的程序,可得到样品中表达最为稳定的一对内参基因组合)及NormFinder(excel加载宏,以方差分析为模型对候选内参基因的稳定性进行分析,可得到稳定性最高的候选内参基因)方法分析发现miR-16表达最为稳定,以miR-16为内参得到的相对定量结果与用细胞数校正的定量结果一致,证实了miR-16是猪囊胚microRNA定量PCR分析的适宜内参基因.

References

[1]  1 Brown B D, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet,2009, 10: 578–585
[2]  2 Cordes K R, Sheehy N T, White M P, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 2009, 460:705–710
[3]  3 Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008, 132: 9–14??
[4]  4 Xie X, Lu J, Kulbokas E J, et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature, 2005, 434: 338–345??
[5]  5 Foshay K M, Gallicano G I. miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol, 2009, 326: 431–443??
[6]  6 Kanellopoulou C, Muljo S A, Kung A L, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005, 19: 489–501??
[7]  7 Murchison E P, Partridge J F, Tam O H, et al. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA,2005, 102: 12135–12140??
[8]  8 Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol, 2008, 15: 268–279??
[9]  9 Duursma A M, Kedde M, Schrier M, et al. miR-148 targets human DNMT3b protein coding region. RNA, 2008, 14: 872–877??
[10]  10 Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA, 2007, 104: 15805–15810??
[11]  11 Bernstein E, Kim S Y, Carmell M A, et al. Dicer is essential for mouse development. Nat Genet, 2003, 35: 215–217??
[12]  12 Tang F, Kaneda M, O’Carroll D, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev, 2007, 21: 644–648??
[13]  13 Davoren P A, McNeill R E, Lowery A J, et al. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol, 2008, 9: 76??
[14]  14 Stamova B S, Apperson M, Walker W L, et al. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. BMC Med Genomics, 2009, 2: 49??
[15]  15 Reddy A M, Zheng Y, Jagadeeswaran G, et al. Cloning, characterization and expression analysis of porcine microRNAs. BMC Genomics,2009, 10: 65??
[16]  16 Wei H X, Zhang K, Ma Y F, et al. Stage-dependent effect of leptin on development of porcine embryos derived from parthenogenetic activation and transgenic somatic cell nuclear transfer. J Reprod Dev, 2009, 55: 99–104??
[17]  17 Zhang K, Wei H X, Zhang Y H, et al. Effects of ghrelin on in vitro development of porcine in vitro fertilized and parthenogenetic embryos. J Reprod Dev, 2007, 53: 647–653??
[18]  18 Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33: e179??
[19]  19 Tang F, Hajkova P, Barton S C, et al. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res, 2006, 34: e9??
[20]  20 Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402–408??
[21]  21 Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3: research0034–research0034.11
[22]  22 Andersen C L, Jensen J L, Orntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res, 2004, 64:5245–5250??
[23]  23 Wong M L, Medrano J F. Real-time PCR for mRNA quantitation. Biotechniques, 2005, 39: 75–85??
[24]  24 Runte M, Huttenhofer A, Gross S, et al. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet, 2001, 10: 2687–2700??
[25]  25 Peltier H J, Latham G J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA, 2008, 14: 844–852??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133