全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

白叶枯病菌胁迫下云南普通野生稻SSH文库的构建及抗病相关基因分析

DOI: 10.1360/052012-286, PP. 972-980

Keywords: 云南普通野生稻,白叶枯病菌,抑制差减杂交,生物信息学分析,半定量RT-PCR,白叶枯病抗性基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

以云南普通野生稻为材料,利用抑制差减杂交技术(SSH),构建了白叶枯病菌胁迫的云南普通野生稻特异表达基因的差减文库.通过对文库所有阳性单克隆进行测序,聚类分析后共获得494条高质量的表达序列标签(EST).经过BlastN分析,有417条与已知功能的序列有较高同源性;经BlastX分析,有104条EST与未知功能蛋白或假定蛋白有较高相似性,49条EST未能找到同源匹配,341条EST与已知功能蛋白有较高同源性.初步分析发现,这些基因主要涉及能量代谢、蛋白质代谢、核酸代谢、防御与抗逆应答反应、信号转导、光合作用及膜运输等代谢过程.使用半定量RT-PCR研究了7个可能与白叶枯病抗性相关的EST序列在云南普通野生稻对照和白叶枯病菌处理的叶片中的表达情况,并获得这些基因的表达谱.结果发现,克隆编号为OR7,OR68和OR826的EST受白叶枯病菌胁迫诱导上调表达,其中OR826EST在蛋白数据库中无同源序列,可能是一类新的白叶枯病抗性基因,而组成型表达的OR143EST在对照和接菌处理的叶片中均能检测到其mRNA的表达,但其表达量在白叶枯病菌胁迫48h后逐渐增强,推测这些基因直接参与了云南普通野生稻抗病防御反应.本研究为从云南普通野生稻中发掘和克隆新的白叶枯病抗性基因提供了理论依据,为进一步研究云南普通野生稻抗白叶枯病的分子机制奠定了基础.

References

[1]  1 Mew T W. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359-382
[2]  2 Gonzalez C, Szurek B, Manceau C, et al. Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. Mol Plant Microbe Interact, 2007, 20: 534-546
[3]  3 Li Z K, Arif M, Zhong D B, et al. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. Oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994-7999
[4]  4 Kay S, Hahn S, Marios E, et al. A bacterial efferctor acts as a plant transcription factor and induces a cell size regulator. Science, 2007, 18: 648-651
[5]  5 Gu K, Yang B, Tian D, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125
[6]  6 樊颖伦, 陈学伟, 王春连, 等. 水稻抗白叶枯病基因Xa23的RFLP标记定位及其STS标记的转化. 作物学报, 2006, 32: 931-935
[7]  7 虞玲锦, 张国强, 丁秀文, 等. 水稻抗白叶枯病基因及其应用研究进展. 植物生理学报, 2012, 48: 223-231
[8]  8 Yang Z, Sun X, Wang S, et al. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106: 1467-1472
[9]  11 Lee S, Han S, Sririyanum M, et al. A type I-secreted, sulfated peptide triggers Xa21-mediated innate immunity. Science, 2009, 326: 850-853
[10]  12 Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806
[11]  13 章琦, 赵炳宇, 赵开军, 等. 普通野生稻的抗水稻白叶枯病新基因Xa23(t)的鉴定和分子标记定位. 作物学报, 2000, 26: 536-542
[12]  14 Staskawicz B J, Mudgett M B, Dangl J L, et al. Common and contrasting themes of plant and animal disease. Science, 2001, 292: 2285-2289
[13]  15 张计育, 渠慎春, 郭忠仁, 等. 植物bZIP转录因子的生物学功能. 西北植物学报, 2011, 31: 1066-1075
[14]  16 Johnson C, Boden E, Arias J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 2003, 15: 1846-1858
[15]  17 Zhou J M, Trifa Y, Silva H, et al. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact, 2000, 13: 191-202
[16]  18 Subramaniam R, Desveaux D, Spickier C, et al. Direct visualization of protein interactions in plant cells. Nat Biotechnol, 2001, 19: 769-772
[17]  19 Takenaga M, Hatano M, Takamori M, et al. Bcl6-dependent transcriptional repression by BAZF. Biochem Biophys Res Commun, 2003, 303: 600-608
[18]  9 郑崇珂, 王春连, 于元杰, 等. 水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位. 作物学报, 2009, 35: 1173-1180
[19]  10 Korinsak S, Sriprakhon S, Sirithanya P, et al. Indentification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7''. Maejo Int J Sci Tech, 2009, 3: 235-247
[20]  20 Kelly K F, Otchere A A, Graham M, et al. Nuclear import of the BTB/POZ transcriptional regulator Kaiso. J Cell Sci, 2004, 117: 6143-6152
[21]  21 He Z H, Wang Z Y, Li J M, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 2000, 288: 2360-2363
[22]  22 Santos M O, Romano E, Vieira L S, et al. Suppression of SERK gene expression affects fungus tolerance and somatic embryogenesis in transgenic lettuce. Plant Biol, 2009, 11: 83-89
[23]  23 Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta, 2005, 222: 107-117
[24]  24 Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60: 379-406
[25]  25 Shan L, He P, Li J, et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe, 2008, 4: 17-27
[26]  26 邱定红, 冯志民. 磷脂酰肌醇-3激酶研究概况. 国际医学遗传学, 2000, 23: 30-32
[27]  27 朱健, 谈莹, 何兰, 等. 谷胱甘肽S-转移酶Pi在MAPK途径中的调节作用. 细胞生物学杂志, 2004, 26: 252-256

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133