38 Yuan D, Zh Z, Tan X, et al. Minor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selection. Presented at the 62nd Annual Meeting of The American Society of Human Genetics, San Francisco, CA, USA, 2012
[2]
39 Ho M W. Development and evolution revisited. In: Hood K E, Halpern C T, Greenberg G, eds. Handbook of Developmental Science, Behavior and Genetics. New York: Blackwell Publishing, 2010
[3]
40 Sokolosky M L, Wargovich M J. Homeostatic imbalance and colon cancer: the dynamic epigenetic interplay of inflammation, environmental toxins, and chemopreventive plant compounds. Front Oncol, 2012, 2: 57-76
[4]
41 Sethi G, Pathak H B, Zhang H, et al. An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer. PLoS ONE, 2012, 7: e47086, doi:10.1371/journal.pone.0047086
[5]
1 Kimura M. Evolutionary rate at the molecular level. Nature, 1968, 217: 624-626
[6]
2 King J L, Jukes T H. Non-Darwinian evolution. Science, 1969, 164: 788-798
[7]
3 Kumar S. Molecular clocks: four decades of evolution. Nat Rev Genet, 2005, 6: 654-662
[8]
4 Zuckerkandl E, Pauling L. Molecular disease, evolution, and genetic heterogeneit. In: Kasha M, Pullman B, eds. Horizons in Biochemistry. New York: Academic Press, 1962
[9]
5 Margoliash E. Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA, 1963, 50: 672-679
[10]
6 Huang S. The genetic equidistance result of molecular evolution is independent of mutation rates. J Comp Sci Syst Biol, 2008, 1: 92-102
[11]
7 Copley R R, Schultz J, Ponting C P, et al. Protein families in multicellular organisms. Curr Opin Struct Biol, 1999, 9: 408-415
[12]
8 Huang S. Inverse relationship between genetic diversity and epigenetic complexity. Preprint available at Nature Precedings, 2009, http: //dx.doi.org/10.1038/npre.2009.1751.2
[13]
9 Huang S. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers. Sci China Life Sci, 2012, 55: 709-725
[14]
10 Pulquerio M J, Nichols R A. Dates from the molecular clock: how wrong can we be? Trends Ecol Evol, 2007, 22: 180-184
[15]
11 Laird C D, McConaughy B L, McCarthy B J. Rate of fixation of nucleotide substitutions in evolution. Nature, 1969, 224: 149-154
[16]
12 Jukes T H, Holmquist R. Evolutionary clock: nonconstancy of rate in different species. Science, 1972, 177: 530-532
[17]
13 Goodman M, Moore G W, Barnabas J, et al. The phylogeny of human globin genes investigated by the maximum parsimony method. J Mol Evol, 1974, 3: 1-48
[18]
14 Langley C H, Fitch W M. An examination of the constancy of the rate of molecular evolution. J Mol Evol, 1974, 3: 161-177
[19]
15 Li W H. Molecular Evolution. Sunderland, MA: Sinauer Associates, 1997
[20]
16 Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 2000
[21]
17 Avise J C. Molecular Markers. Natural History and Evolution. New York, NY: Springer, 1994
[22]
18 Gago S, Elena S F, Flores R, et al. Extremely high mutation rate of a hammerhead viroid. Science, 2009, 323: 1308
[23]
19 Huang S. Molecular evidence for the hadrosaur B. canadensis as an outgroup to a clade containing the dinosaur T. rex and birds. Riv Biol, 2009, 102: 20-22
[24]
20 Huang S. Ancient fossil specimens are genetically more distant to an outgroup than extant sister species are. Riv Bio, 2008, 101: 93-108
[25]
21 Denton M. Evolution: a Theory in Crisis. Chevy Chase, MD: Adler & Adler, 1986
[26]
22 Van Valen L. Molecular evolution as predicted by natural selection. J Mol Evol, 1974, 3: 89-101
[27]
23 Clarke B. Darwinian evolution of proteins. Science, 1970, 168: 1009-1011
[28]
24 Richmond R C. Non-Darwinian evolution: a critique. Nature, 1970, 225: 1025-1028
[29]
25 Kimura M, Ohta T. On the rate of molecular evolution. J Mol Evol, 1971, 1: 1-17
[30]
26 Ayala F J. Molecular clock mirages. BioEssays, 1999, 21: 71-75
[31]
27 Huang S. The overlap feature of the genetic equidistance result, a fundamental biological phenomenon overlooked for nearly half of a century. Biological Theory, 2010, 5: 40-52
[32]
28 Huang S. Histone methylation and the initiation of cancer. In: Tollefsbol T, ed. Cancer Epigenetics. New York: CRC Press, 2008
[33]
29 Jiang G L, Huang S. The yin-yang of PR-domain family genes in tumorigenesis. Histol Histopathol, 2000, 15: 109-117
[34]
30 Huang S. Histone methyltransferases, diet nutrients, and tumor suppressors. Nat Rev Cancer, 2002, 2: 469-476
[35]
31 Remy J J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr Biol, 2010, 20: R877-R878
[36]
32 Anway M D, Cupp A S, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 2005, 308: 1466-1469
[37]
33 Hitchins M P, Wong J J, Suthers G, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med, 2007, 356: 697-705
[38]
34 Cropley J E, Suter C M, Beckman K B, et al. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci USA, 2006, 103: 17308-17312