全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

急性白血病基因突变与多步骤发病机制和临床相关性

DOI: 10.1360/052012-426, PP. 39-45

Keywords: 急性髓细胞白血病,表观遗传学,基因突变

Full-Text   Cite this paper   Add to My Lib

Abstract:

急性髓细胞白血病(AML)是一组在发病机制和临床行为方面差异较大的疾病.在急性早幼粒细胞白血病中(APL),PML-RARa是APL的关键驱动(driver)突变,具有显性负的调控作用,影响髓系分化、凋亡和DNA复制和修复,其特殊结构使其成为全反式维甲酸和三氧化二砷的靶标.随着第二代测序技术的发展,在AML中发现了一些新的基因突变,其中DNA甲基转移酶3A(DNMT3A)突变是与表观遗传学相关的、与AML较差预后有关的基因事件.在1185例AML的基因分析中,研究发现与表观遗传学相关的第Ⅲ类突变与老年、高WBC及较差的临床预后有关.AML的发病是多步骤的,涉及不同通路上不同分子事件的相互作用,目前认为影响转录因子和信号传导通路的分子事件相互作用是AML完全发病的重要模式之一.

References

[1]  1 Collins F S, Barker A D. Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am, 2007, 296: 50-57
[2]  2 Dickson D. Wellcome funds cancer database. Nature, 1999, 401: 729
[3]  3 Hudson T J, Anderson W, Artez A, et al. International network of cancer genome projects. Nature, 2010, 464: 993-998??
[4]  4 Ledford H. Big science: the cancer genome challenge. Nature, 2010, 464: 972-974??
[5]  5 Starczynowski D T, Morin R, McPherson A, et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood, 2011, 117: 595-607??
[6]  6 Tong W G, Wierda W G, Lin E, et al. Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics, 2010, 5: 499-508??
[7]  7 Hu J, Liu Y F, Wu C F, et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA, 2009, 106: 3342-3347??
[8]  8 Niu C, Yan H, Yu T, et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood, 1999, 94: 3315-3324
[9]  9 Zhou J, Zhang Y, Li J, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood, 2010, 115: 1697-1702??
[10]  10 Zhu J, Gianni M, Kopf E, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci USA, 1999, 96: 14807-14812??
[11]  11 Zhu J, Koken M H, Quignon F, et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA, 1997, 94: 3978-3983??
[12]  12 He L Z, Tribioli C, Rivi R, et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA, 1997, 94: 5302-5307??
[13]  13 Melnick A, Licht J D. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood, 1999, 93: 3167-3215
[14]  14 Cai X, Shen Y L, Zhu Q, et al. Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia, 2000, 14: 262-270??
[15]  15 Zhu J, Lallemand-Breitenbach V, de The H. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene, 2001, 20: 7257-7265??
[16]  16 Kamashev D, Vitoux D, De The H. PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med, 2004, 199: 1163-1174??
[17]  17 Villa R, Pasini D, Gutierrez A, et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell, 2007, 11: 513-525??
[18]  18 Boukarabila H, Saurin A J, Batsche E, et al. The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev, 2009, 23: 1195-1206??
[19]  19 Wang K, Wang P, Shi J, et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell, 2010, 17: 186-197
[20]  20 Zhang X W, Yan X J, Zhou Z R, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science, 2010, 328: 240-243??
[21]  21 Jeanne M, Lallemand-Breitenbach V, Ferhi O, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell, 2010, 18: 88-98??
[22]  22 Ito K, Bernardi R, Morotti A, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 2008, 453: 1072-1078??
[23]  23 Nasr R, Guillemin M C, Ferhi O, et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med, 2008, 14: 1333-1342??
[24]  24 Han S S, Kim K, Hahm E R, et al. Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J Cell Biochem, 2005, 94: 695-707
[25]  25 Mathieu J, Besancon F. Arsenic trioxide represses NF-kappaB activation and increases apoptosis in ATRA-treated APL cells. Ann N Y Acad Sci, 2006, 1090: 203-208??
[26]  26 Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol, 2011, 29: 487-494??
[27]  27 Falini B, Nicoletti I, Martelli M F, et al. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+AML): biologic and clinical features. Blood, 2007, 109: 874-885
[28]  28 Mills K I, Kohlmann A, Williams P M, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood, 2009, 114: 1063-1072??
[29]  29 Pasqualucci L, Liso A, Martelli M P, et al. Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: impact on WHO classification. Blood, 2006, 108: 4146-4155??
[30]  30 Schlenk R F, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med, 2008, 358: 1909-1918??
[31]  31 Chou W C, Hou H A, Chen C Y, et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood, 2010, 115: 2749-2754??
[32]  32 Schnittger S, Haferlach C, Ulke M, et al. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood, 2010, 116: 5486-5496
[33]  33 Damm F, Thol F, Hollink I, et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia, 2011, 25: 1704-1710??
[34]  34 Yan XJ , Xu J, Gu Z H, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet, 2011, 43: 309-315??
[35]  35 Shen Y, Zhu Y M, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood, 2011, 118: 5593-5603??
[36]  36 Konoplev S, Yin C C, Kornblau S M, et al. Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma, 2012, in press
[37]  37 Zhang S J, Ma L Y, Huang Q H, et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci USA, 2008, 105: 2076-2081??
[38]  38 Zhao L J, Wang Y Y, Li G, et al. Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia. Blood, 2012, 119: 2873-2882??
[39]  39 Hochhaus A, O’Brien S G, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia, 2009, 23: 1054-1061??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133