全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Phase Transition in Limiting Distributions of Coherence of High-Dimensional Random Matrices

Full-Text   Cite this paper   Add to My Lib

Abstract:

The coherence of a random matrix, which is defined to be the largest magnitude of the Pearson correlation coefficients between the columns of the random matrix, is an important quantity for a wide range of applications including high-dimensional statistics and signal processing. Inspired by these applications, this paper studies the limiting laws of the coherence of $n\times p$ random matrices for a full range of the dimension $p$ with a special focus on the ultra high-dimensional setting. Assuming the columns of the random matrix are independent random vectors with a common spherical distribution, we give a complete characterization of the behavior of the limiting distributions of the coherence. More specifically, the limiting distributions of the coherence are derived separately for three regimes: $\frac{1}{n}\log p \to 0$, $\frac{1}{n}\log p \to \beta\in (0, \infty)$, and $\frac{1}{n}\log p \to\infty$. The results show that the limiting behavior of the coherence differs significantly in different regimes and exhibits interesting phase transition phenomena as the dimension $p$ grows as a function of $n$. Applications to statistics and compressed sensing in the ultra high-dimensional setting are also discussed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133