%0 Journal Article %T Phase Transition in Limiting Distributions of Coherence of High-Dimensional Random Matrices %A Tony Cai %A Tiefeng Jiang %J Mathematics %D 2011 %I arXiv %X The coherence of a random matrix, which is defined to be the largest magnitude of the Pearson correlation coefficients between the columns of the random matrix, is an important quantity for a wide range of applications including high-dimensional statistics and signal processing. Inspired by these applications, this paper studies the limiting laws of the coherence of $n\times p$ random matrices for a full range of the dimension $p$ with a special focus on the ultra high-dimensional setting. Assuming the columns of the random matrix are independent random vectors with a common spherical distribution, we give a complete characterization of the behavior of the limiting distributions of the coherence. More specifically, the limiting distributions of the coherence are derived separately for three regimes: $\frac{1}{n}\log p \to 0$, $\frac{1}{n}\log p \to \beta\in (0, \infty)$, and $\frac{1}{n}\log p \to\infty$. The results show that the limiting behavior of the coherence differs significantly in different regimes and exhibits interesting phase transition phenomena as the dimension $p$ grows as a function of $n$. Applications to statistics and compressed sensing in the ultra high-dimensional setting are also discussed. %U http://arxiv.org/abs/1102.2926v1