全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Bounds for the first several prime character nonresidues

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\varepsilon > 0$. We prove that there are constants $m_0=m_0(\varepsilon)$ and $\kappa=\kappa(\varepsilon) > 0$ for which the following holds: For every integer $m > m_0$ and every nontrivial Dirichlet character modulo $m$, there are more than $m^{\kappa}$ primes $\ell \le m^{\frac{1}{4\sqrt{e}}+\varepsilon}$ with $\chi(\ell)\notin \{0,1\}$. The proof uses the fundamental lemma of the sieve, Norton's refinement of the Burgess bounds, and a result of Tenenbaum on the distribution of smooth numbers satisfying a coprimality condition. For quadratic characters, we demonstrate a somewhat weaker lower bound on the number of primes $\ell \le m^{\frac14+\epsilon}$ with $\chi(\ell)=1$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133