%0 Journal Article %T Bounds for the first several prime character nonresidues %A Paul Pollack %J Mathematics %D 2015 %I arXiv %X Let $\varepsilon > 0$. We prove that there are constants $m_0=m_0(\varepsilon)$ and $\kappa=\kappa(\varepsilon) > 0$ for which the following holds: For every integer $m > m_0$ and every nontrivial Dirichlet character modulo $m$, there are more than $m^{\kappa}$ primes $\ell \le m^{\frac{1}{4\sqrt{e}}+\varepsilon}$ with $\chi(\ell)\notin \{0,1\}$. The proof uses the fundamental lemma of the sieve, Norton's refinement of the Burgess bounds, and a result of Tenenbaum on the distribution of smooth numbers satisfying a coprimality condition. For quadratic characters, we demonstrate a somewhat weaker lower bound on the number of primes $\ell \le m^{\frac14+\epsilon}$ with $\chi(\ell)=1$. %U http://arxiv.org/abs/1508.05035v2