全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Straight homotopy invariants

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $X$ and $Y$ be spaces and $M$ be an abelian group. A homotopy invariant $f\colon [X,Y]\to M$ is called straight if there exists a homomorphism $F\colon L(X,Y)\to M$ such that $f([a])=F(\langle a\rangle)$ for all $a\in C(X,Y)$. Here $\langle a\rangle\colon\langle X\rangle\to\langle Y\rangle$ is the homomorphism induced by $a$ between the abelian groups freely generated by $X$ and $Y$ and $L(X,Y)$ is a certain group of `admissible' homomorphisms. We show that all straight invariants can be expressed through a `universal' straight invariant of homological nature.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133