%0 Journal Article %T Straight homotopy invariants %A S. S. Podkorytov %J Mathematics %D 2014 %I arXiv %X Let $X$ and $Y$ be spaces and $M$ be an abelian group. A homotopy invariant $f\colon [X,Y]\to M$ is called straight if there exists a homomorphism $F\colon L(X,Y)\to M$ such that $f([a])=F(\langle a\rangle)$ for all $a\in C(X,Y)$. Here $\langle a\rangle\colon\langle X\rangle\to\langle Y\rangle$ is the homomorphism induced by $a$ between the abelian groups freely generated by $X$ and $Y$ and $L(X,Y)$ is a certain group of `admissible' homomorphisms. We show that all straight invariants can be expressed through a `universal' straight invariant of homological nature. %U http://arxiv.org/abs/1405.0396v2