全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Finite-time blowup for a complex Ginzburg-Landau equation with linear driving

DOI: 10.1007/s00028-014-0220-z

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we consider the complex Ginzburg--Landau equation $u_t = e^{i\theta} [\Delta u + |u|^\alpha u] + \gamma u$ on ${\mathbb R}^N $, where $\alpha >0$, $\gamma \in \R$ and $-\pi /2<\theta <\pi /2$. By convexity arguments we prove that, under certain conditions on $\alpha ,\theta ,\gamma $, a class of solutions with negative initial energy blows up in finite time.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133