%0 Journal Article %T Finite-time blowup for a complex Ginzburg-Landau equation with linear driving %A Thierry Cazenave %A Jo£żo Paulo Dias %A M¨˘rio Figueira %J Mathematics %D 2013 %I arXiv %R 10.1007/s00028-014-0220-z %X In this paper, we consider the complex Ginzburg--Landau equation $u_t = e^{i\theta} [\Delta u + |u|^\alpha u] + \gamma u$ on ${\mathbb R}^N $, where $\alpha >0$, $\gamma \in \R$ and $-\pi /2<\theta <\pi /2$. By convexity arguments we prove that, under certain conditions on $\alpha ,\theta ,\gamma $, a class of solutions with negative initial energy blows up in finite time. %U http://arxiv.org/abs/1310.0191v1