全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Filter-Based Fading Channel Modeling

DOI: 10.1155/2012/705078

Full-Text   Cite this paper   Add to My Lib

Abstract:

A channel simulator is an essential component in the development and accurate performance evaluation of wireless systems. A key technique for producing statistically accurate fading variates is to shape the flat spectrum of Gaussian variates using digital filters. This paper addresses various challenges when designing real and complex spectrum shaping filters with quantized coefficients for efficient realization of both isotropic and nonisotropic fading channels. An iterative algorithm for designing stable complex infinite impulse response (IIR) filters with fixed-point coefficients is presented. The performance of the proposed filter design algorithm is verified with 16-bit fixed-point simulations of two example fading filters. 1. Introduction Wireless communication systems must be designed to operate over radio channels in a wide variety of expected environments. Testing wireless transceivers is challenging due to unrepeatable and uncontrollable channel conditions. The initial performance verification of communication systems at the early stages of the design cycle is performed based on the channel characteristics defined by the underlying wireless communication standard. Therefore, accurate emulation of fading channels is a key step in the design and verification of wireless communication systems. In the multipath propagation scenario, the received signal contains different faded copies of the transmitted signal. The effect of the multipath fading channel on the baseband signal can be modeled with a time-variant linear system with the following impulse response [1]: where is the number of independent paths, is the average attenuation of the th path, and and denote the complex gain and delay of the th path. Each path gain is commonly modeled as a complex Gaussian wide-sense stationary (WSS) process [2]. To simulate a fading channel, we need to generate a suitable sequence of complex path gains and then superimpose delayed replicas of the transmitted samples with the given delays and path attenuations . Two major techniques have been widely used for simulating fading channels. In the first approach, the so-called sum-of-sinusoids (SoS) model, the fading process is modeled as the superposition of a sufficiently large number of sinusoidal waves. This approach was originally proposed by Clarke [3] and later simplified by Jakes [4]. Over the past four decades several modified SoS-based models have been proposed (e.g., [5, 6]). The second approach, which is used in this paper, is called the filter-based scheme. In this approach, to generate the in-phase and

References

[1]  G. L. Stuber, Principles of Mobile Communication, Kluwer Academic Publishers, New York, NY, USA, 2001.
[2]  P. Bello, “Characterization of randomly time-variant linear channels,” IEEE Transactions on Communications, vol. 11, no. 4, pp. 360–393, 1963.
[3]  R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell System Technical Journal, vol. 47, pp. 957–1000, 1968.
[4]  W. C. Jakes, Microwave Mobile Communications, Wiley-IEEE Press, Piscataway, NJ, USA, 1994.
[5]  Y. R. Zheng and C. Xiao, “Simulation models with correct statistical properties for Rayleigh fading channels,” IEEE Transactions on Communications, vol. 51, no. 6, pp. 920–928, 2003.
[6]  A. Alimohammad, S. Fouladi Fard, B. F. Cockburn, and C. Schlegel, “An improved SOS-based fading channel emulator,” in Proceedings of the IEEE 66th Vehicular Technology Conference (VTC'07), pp. 931–935, Baltimore, Md, USA, October 2007.
[7]  J. I. Smith, “Computer generated multipath fading simulation for mobile radio,” IEEE Transactions on Vehicular Technology, vol. 24, no. 3, pp. 39–40, 1975.
[8]  R. H. Clarke and W. L. Khoo, “3-D mobile radio channel statistics,” IEEE Transactions on Vehicular Technology, vol. 46, no. 3, pp. 798–799, 1997.
[9]  D. J. Young and N. C. Beaulieu, “The generation of correlated Rayleigh random variates by inverse discrete fourier transform,” IEEE Transactions on Communications, vol. 48, no. 7, pp. 1114–1127, 2000.
[10]  K. W. Yip and T. S. Ng, “Efficient simulation of digital transmission over WSSUS channels,” IEEE Transactions on Communications, vol. 43, no. 12, pp. 2907–2913, 1995.
[11]  R. A. Goubran, H. M. Hafez, and A. U. H. Sheikh, “Implementation of a real-time mobile channel simulator using a DSP chip,” IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 4, pp. 709–714, 1991.
[12]  C. Komninakis, “A Fast and Accurate Rayleigh Fading Simulator,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'03), pp. 3306–3310, December 2003.
[13]  A. Alimohammad, S. Fouladi Fard, B. F. Cockburn, and C. Schlegel, “A compact single-FPGA fading-channel simulator,” IEEE Transactions on Circuits and Systems II, vol. 55, no. 1, pp. 84–88, 2008.
[14]  L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic Publishers, 1989.
[15]  K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation,” IEEE Transactions on Wireless Communications, vol. 4, no. 4, pp. 1650–1662, 2005.
[16]  A. Antoniou, Digital Filters, Analysis, Design, and Applications, McGraw-Hill, 1993.
[17]  J. Carletta, R. Veillette, F. Krach, and Z. Fang, “Determining appropriate precisions for signals in fixed-point IIR filters,” in Proceedings of the 40th Design Automation Conference, pp. 656–661, June 2003.
[18]  “Filter design toolbox for use with Matlab,” User's Guide, The Mathworks, 2005.
[19]  M. P?tzold, Y. Li, and F. Laue, “A study of a land mobile satellite channel model with asymmetrical Doppler power spectrum and lognormally distributed line-of-sight component,” IEEE Transactions on Vehicular Technology, vol. 47, no. 1, pp. 297–310, 1998.
[20]  P. Petrus, J. H. Reed, and T. S. Rappaport, “Effects of directional antennas at the base station on the Doppler spectrum,” IEEE Communications Letters, vol. 1, no. 2, pp. 40–42, 1997.
[21]  J. Salz and J. H. Winters, “Effect of fading correlation on adaptive arrays in digital mobile radio,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 1049–1057, 1994.
[22]  K. Anim-Appiah, “Complex envelope correlations for non-isotropic scattering,” Electronics Letters, vol. 34, no. 9, pp. 918–919, 1998.
[23]  Q. Spencer, M. Rice, B. Jeffs, and M. Jensen, “Statistical model for angle of arrival in indoor multipath propagation,” in Proceedings of the 1997 47th IEEE Vehicular Technology Conference, pp. 1415–1419, Phoenix, Ariz, USA, May 1997.
[24]  M. D. Austin and G. L. Stuber, “Velocity adaptive handoff algorithms for microcellular systems,” IEEE Transactions on Vehicular Technology, vol. 43, no. 3, pp. 549–561, 1994.
[25]  A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station,” IEEE Transactions on Vehicular Technology, vol. 51, no. 3, pp. 425–434, 2002.
[26]  C. A. Gutiérrez and M. P?tzold, “The design of sum-of-cisoids Rayleigh fading channel simulators assuming non-isotropic scattering conditions,” IEEE Transactions on Wireless Communications, vol. 9, no. 4, pp. 1308–1314, 2010.
[27]  C. A. Gutiérrez, M. Ptzold, A. Sandoval, and C. Delgado-Mata, “An ergodic sum-of-cisoids simulator for multiple uncorrelated Rayleigh fading channels under generalized scattering conditions,” IEEE Transactionson Wireless Communications, vol. 61, no. 5, pp. 2375–2382, 2012.
[28]  K. V. Mardia, Statistics of Directional Data, Academic Press, New York, NY, USA, 1972.
[29]  A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete Time Signal Processing, Prentice Hall, 1999.
[30]  V. Erceg, L. Schumacher, P. Kyritsi, et al., “TGn channel models,” Tech. Rep. IEEE 802.11-03/940r4, Garden Grove, Calif, USA, 2004.
[31]  H. G. Martinez, “Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 2, pp. 150–156, 1978.
[32]  X. Chen and T. W. Parks, “Design of IIR filters in the complex domain,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 6, pp. 910–920, 1990.
[33]  W. S. Lu, “Design of stable minimax IIR digital filters using semidefinite programming,” in Proceedings of the IEEE Internaitonal Symposium on Circuits and Systems, pp. 355–358, Geneva, Switzerland, May 2000.
[34]  L. B. Jackson, “Frequency-domain Steiglitz-McBride method for least-squares IIR filter design, ARMA modeling, and periodogram smoothing,” IEEE Signal Processing Letters, vol. 15, pp. 49–52, 2008.
[35]  A. G. Deczky, “Synthesis of recursive digital filters using the minimum p-error criterion,” IEEE Transactions on Audio and Electroacoustics, vol. 20, no. 4, pp. 257–263, 1972.
[36]  A. Tarczyński and G. D. Cain, “New algorithm for designing near-optimal Chebyshev IIR and FIR filters,” in Proceedings of the 38th IEEE Midwest Symposium on Circuits and Systems, pp. 584–587, Rio de Janeiro, Brazil, August 1995.
[37]  A. Tarczyński, G. D. Cain, E. Hermanowicz, and M. Rojewski, “A WISE method for designing IIR filters,” IEEE Transactions on Signal Processing, vol. 49, no. 7, pp. 1421–1432, 2001.
[38]  T. W. Fox, “Fixed-point IIR digital filters with simultaneous hardware usage, group delay and magnitude frequency response specifications,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp. 1704–1707, Saskatoon, Canada, May 2005.
[39]  L. B. Jackson, “A narrowband IIR digital filter with low sensitivity and roundoff noise,” IEEE Signal Processing Letters, vol. 10, no. 6, pp. 164–167, 2003.
[40]  G. Vanuytsel, P. Boets, L. Van Biesen, and S. Temmerman, “Efficient hybrid optimization of fixed-point cascaded IIR filter coefficients,” in Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, pp. 793–797, May 2002.
[41]  A. Krukowski and I. Kale, “Two approaches for fixed-point filter design: 'bit-flipping' algorithm and constrained downhill simplex method,” in Proceedings of the Signal Processing and Its Applications Symposium, vol. 2, pp. 965–968, 1999.
[42]  S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[43]  A. Alimohammad, S. Fouladi Fard, and B. F. Cockburn, “Accurate simulation of nonisotropic fading channels with arbitrary temporal correlation,” IET Communications, vol. 6, no. 5, pp. 557–564, 2012.
[44]  K. Steiglitz, “Computer-aided design of recursive digital filters,” IEEE Trans Audio Electroacoust, vol. AU-18, no. 2, pp. 123–129, 1970.
[45]  R. G. Bland, D. Goldfarb, and M. J. Todd, “The ellipsoid method: a survey,” Operations Research, vol. 29, no. 6, pp. 1039–1091, 1981.
[46]  A. K. Aboagye, “Overflow avoidance techniques in cascaded IIR filter implementations on the TMS320 DSPs,” Texas Instruments Application Report, 1999.
[47]  L. B. Jackson, Digital Filters and Signal Processing: with MATLAB Exercises, Kluwer Academic Publishers, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133