%0 Journal Article %T Filter-Based Fading Channel Modeling %A Amirhossein Alimohammad %A Saeed Fouladi Fard %A Bruce F. Cockburn %J Modelling and Simulation in Engineering %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/705078 %X A channel simulator is an essential component in the development and accurate performance evaluation of wireless systems. A key technique for producing statistically accurate fading variates is to shape the flat spectrum of Gaussian variates using digital filters. This paper addresses various challenges when designing real and complex spectrum shaping filters with quantized coefficients for efficient realization of both isotropic and nonisotropic fading channels. An iterative algorithm for designing stable complex infinite impulse response (IIR) filters with fixed-point coefficients is presented. The performance of the proposed filter design algorithm is verified with 16-bit fixed-point simulations of two example fading filters. 1. Introduction Wireless communication systems must be designed to operate over radio channels in a wide variety of expected environments. Testing wireless transceivers is challenging due to unrepeatable and uncontrollable channel conditions. The initial performance verification of communication systems at the early stages of the design cycle is performed based on the channel characteristics defined by the underlying wireless communication standard. Therefore, accurate emulation of fading channels is a key step in the design and verification of wireless communication systems. In the multipath propagation scenario, the received signal contains different faded copies of the transmitted signal. The effect of the multipath fading channel on the baseband signal can be modeled with a time-variant linear system with the following impulse response [1]: where is the number of independent paths, is the average attenuation of the th path, and and denote the complex gain and delay of the th path. Each path gain is commonly modeled as a complex Gaussian wide-sense stationary (WSS) process [2]. To simulate a fading channel, we need to generate a suitable sequence of complex path gains and then superimpose delayed replicas of the transmitted samples with the given delays and path attenuations . Two major techniques have been widely used for simulating fading channels. In the first approach, the so-called sum-of-sinusoids (SoS) model, the fading process is modeled as the superposition of a sufficiently large number of sinusoidal waves. This approach was originally proposed by Clarke [3] and later simplified by Jakes [4]. Over the past four decades several modified SoS-based models have been proposed (e.g., [5, 6]). The second approach, which is used in this paper, is called the filter-based scheme. In this approach, to generate the in-phase and %U http://www.hindawi.com/journals/mse/2012/705078/