全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Gr?bner bases of syzygies and Stanley depth

DOI: 10.1016/j.jalgebra.2010.10.032

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let F. be a any free resolution of a Z^n-graded submodule of a free module over the polynomial ring K[x_1, ..., x_n]. We show that for a suitable term order on F., the initial module of the p'th syzygy module Z_p is generated by terms m_ie_i where the m_i are monomials in K[x_{p+1}, ..., x_n]. Also for a large class of free resolutions F., encompassing Eliahou-Kervaire resolutions, we show that a Gr\"obner basis for Z_p is given by the boundaries of generators of F_p. We apply the above to give lower bounds for the Stanley depth of the syzygy modules Z_p, in particular showing it is at least p+1. We also show that if I is any squarefree ideal in K[x_1, ..., x_n], the Stanley depth of I is at least of order the square root of 2n.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133