%0 Journal Article %T Gr£¿bner bases of syzygies and Stanley depth %A Gunnar Floystad %A Juergen Herzog %J Mathematics %D 2010 %I arXiv %R 10.1016/j.jalgebra.2010.10.032 %X Let F. be a any free resolution of a Z^n-graded submodule of a free module over the polynomial ring K[x_1, ..., x_n]. We show that for a suitable term order on F., the initial module of the p'th syzygy module Z_p is generated by terms m_ie_i where the m_i are monomials in K[x_{p+1}, ..., x_n]. Also for a large class of free resolutions F., encompassing Eliahou-Kervaire resolutions, we show that a Gr\"obner basis for Z_p is given by the boundaries of generators of F_p. We apply the above to give lower bounds for the Stanley depth of the syzygy modules Z_p, in particular showing it is at least p+1. We also show that if I is any squarefree ideal in K[x_1, ..., x_n], the Stanley depth of I is at least of order the square root of 2n. %U http://arxiv.org/abs/1003.4495v1