全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Homological interpretation of extensions and biextensions of 1-motives

DOI: 10.1016/j.jnt.2012.04.005

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let k be a separably closed field. Let K_i=[A_i \to B_i] (for i=1,2,3) be three 1-motives defined over k. We define the geometrical notions of extension of K_1 by K_3 and of biextension of (K_1,K_2) by K_3. We then compute the homological interpretation of these new geometrical notions: namely, the group Biext^0(K_1,K_2;K_3) of automorphisms of any biextension of (K_1,K_2) by K_3 is canonically isomorphic to the cohomology group Ext^0(K_1 \otimes K_2,K_3), and the group Biext^1(K_1,K_2;K_3) of isomorphism classes of biextensions of (K_1,K_2) by K_3 is canonically isomorphic to the cohomology group Ext^1(K_1 \otimes K_2,K_3).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133