%0 Journal Article %T Homological interpretation of extensions and biextensions of 1-motives %A Cristiana Bertolin %J Mathematics %D 2008 %I arXiv %R 10.1016/j.jnt.2012.04.005 %X Let k be a separably closed field. Let K_i=[A_i \to B_i] (for i=1,2,3) be three 1-motives defined over k. We define the geometrical notions of extension of K_1 by K_3 and of biextension of (K_1,K_2) by K_3. We then compute the homological interpretation of these new geometrical notions: namely, the group Biext^0(K_1,K_2;K_3) of automorphisms of any biextension of (K_1,K_2) by K_3 is canonically isomorphic to the cohomology group Ext^0(K_1 \otimes K_2,K_3), and the group Biext^1(K_1,K_2;K_3) of isomorphism classes of biextensions of (K_1,K_2) by K_3 is canonically isomorphic to the cohomology group Ext^1(K_1 \otimes K_2,K_3). %U http://arxiv.org/abs/0808.3267v4